نوشته‌ها

Drill Pipe Magnetic Flux Leakage Detector

تشخیص نشتی شار مغناطیسی لوله حفاری به روش MFL

تشخیص نشتی شار مغناطیسی لوله حفاری به روش MFL

مشخصات: قطر ۷۳ تا ۸۹ میلی متر، طول ۹٫۶ متر یا بیشتر
سرعت تشخیص: ۶-۲۰ متر در دقیقه
معیارهای پذیرش: استانداردهای تست API موسسه نفت آمریکا

اصل اولیه بازرسی خط لوله حفاری به روش نشتی شار مغناطیسی MFL به این شکل است که به منظور ایجاد چگالی شار مغناطیسی خاص بر روی قطعه مورد نظر، یک میدان مغناطیسی شکل می گیرد (نزدیک به اشباع) تا بدین وسیله در محل عیوب، میدان مغناطیسی نشتی ایجاد کند. پس از آن سنسورها، سیگنال خروجی را به تقویت کننده عملیاتی (operational amplifier) ارسال می کنند.

قطعه مورد بررسی به دلیل حالت اشباع مغناطیسی، قدرت و چگالی میدان مغناطیسی نسبتاً بالایی دارد و خطوط مغناطیسی نیرو (magnetic lines of force) محدود نمی شوند؛ بدین ترتیب سطح قطعه دارای نشتی مغناطیسی زیادی است که برای تشخیص عیوب در محل مناسب است.
سنسورهای حساس مغناطیسی وظیفه اسکن و بررسی در امتداد سطح مواد مغناطیسی شده را دارند. این سنسورها میدان مغناطیسی نشتی نقص را دریافت می کنند و برای یافتن موقعیت و پارامترهای نقص یک سیگنال الکتریکی از عیب یا نقص تشکیل می دهند.

فناوری بازرسی غیر مخرب نشت شار مغناطیسی به دلیل سرعت تشخیص بالا، قابلیت اطمینان زیاد و و عدم نیاز به سطوح چندان تمیز (از نظر گرد و خاک و روغن و ..) به طور گسترده در تشخیص عیوب سیم بکسل های فلزی و ارزیابی محصولات مرتبط استفاده می شود.

فارغ از تشخیص عادی یا تشخیص ذرات مغناطیسی، سیگنال موجود در تشخیص نشت شار مغناطیسی به وسیله پودر مغناطیسی نمایش داده نمی شود و هیچ آلودگی برای محیط زیست ندارد: به دلیل وجود اجزای حساس مختلف (مانند عنصر هال و روش سیم پیچ)، نتیجه تشخیص به طور مستقیم توسط سیگنال الکتریکی خارج می شود، که برای تحقق پردازش دیجیتال به راحتی به رایانه متصل می شود، بنابراین نتایج تشخیص را می توان ذخیره و بازتولید کرد که این امر تجزیه و تحلیل سیگنال تشخیص و تحلیل روند نتایج تشخیص را تسهیل می کند.

 

منبع :

 

بیشتر بخوانید:

iranian MFL test

عیب یابی سیم بکسل فولادی با دستگاه MFL ایرانی

عیب یابی سیم بکسل فولادی با دستگاه MFL ایرانی

در ویدیو های زیر سامانه تست نشتی شار مغناطیسی یک سیم بکسل را مشاهده می کنید. همانطور که مشخص است سیم بکسل از داخل هد دستگاه عبور کرده و سنسورها و انکودر قرار داده شده در آن بخش وظیفه داده برداری را بر عهده دارند. اصول کارکرد این روش به شکل مغناطیسی است. پس از عبور کابل، یک سیستم داده برداری شامل بورد الکترونیکی، کابل‌های آنتی نویز و باطری‌ها، داده ها را وارد مجموعه نرم افزاری می کند و با کمک این مجموعه نرم افزاری می توان عیوب موجود در سطح کابل سیم بکسل را شناسایی کرد.

همانطور که در صفحه لپتاپ مشخص است داده های حاصل وارد نرم افزار می شوند. این نرم افزار توسط تیم مپوا ساخته شده و توسط نمودارهای تشکیل شده می توان عیوب کابل را تشخیص داد.

دستگاه نشت شار مغناطیسی (Magnetic Flux Leakage (MFL

مطالعه موردی از بازرسی پیوسته به روش نشتی شار مغناطیسی

LF or LMA

تفاوت LMA و LF

تفاوت LMA و LF

در روش ارزیابی مغناطیسی کابل MRT دو اصطلاح یا به‌نوعی دو کلمه اختصاری معروف LMA و LF وجود دارد که هر دو بر اساس استانداردهای ISO4309 و EN12927 مطرح شده‌اند.

  • LF مخفف Localized Fault است. گاهی اوقات می‌توان آن را به‌عنوان LD، نقص موضعی (Localized Defect) نیز یافت.
  • LMA مخفف Loss of Metallic Area است.

 این دو سیگنال معمولاً نشان‌دهنده اصول کار روش MRT است.

 در این مقاله، نحوه تشخیص و نحوه ایجاد آن‌ها، معنای فیزیکی آن‌ها و شرایطی که در آن‌ها بهترین عملکرد را خواهید دید، مطرح شده است.

بیشتر بخوانید : مزایای روش ارزیابی مغناطیسی کابل (MRT)

عیوب موضعی LF (The Localized Fault signal)

فناوری LF قدیمی‌ترین فناوری روش MRT است. این سیگنال معروف، نشت شار مغناطیسی را در صورت وجود نقص در یک جسم مغناطیسی شده، مانند کابل سیم بکسل فولادی، اندازه‌گیری می‌کند.

defect on a rope fully saturated

همان‌طور که در تصویر بالا نشان داده شده است، هنگامی‌که عیبی روی کابل کاملاً اشباع شده وجود داشته باشد، قسمتی از میدان مغناطیسی از کابل خارج شده و از عیب عبور می‌کند.

این پدیده به دلیل وجود شکاف ایجاد شده توسط عیب در کابل رخ می‌دهد. در این حالت خطوط شار تغییر می‌کند چراکه با ناحیه (شکاف) با مقاومت مغناطیسیِ متفاوت برخورد می‌کند. این تغییر در اطراف کابل رخ می‌دهد. شدت و جهت نسبی به ماهیت و شکل عیب بستگی دارد. کاوشگرهای دستگاه، شار را تشخیص داده، آن را به ولتاژ تبدیل می‌کنند و درنهایت سیگنال را استخراج می‌کنند.

در تصاویر زیر می‌توانید دو نمونه از سیگنال‌های معمولی را که با فناوری LF به دست آمده مشاهده کنید.

cable nternal corrosion

localized fault signal

کابل های شکسته شده و دارای خوردگی را می‌توان با فناوری LF تشخیص داد. ذکر این نکته ضروری است که هر سیگنال باید توسط یک تکنسین آموزش‌دیده تفسیر شود. در نمودارها هیچ نشانه واقعی در مورد تعداد کابل‌های شکسته، موجودیت خوردگی یا از بین رفتن سطح فلزی و هیچ درصدی در محور وجود ندارد.

 این نتایج به بخش تفسیر منتقل می‌شوند. یک تکنسین آموزش‌دیده که نمودارها را می‌خواند می‌تواند به‌راحتی وضعیت واقعی کابل را ارزیابی کند. پایداری قوی، خطی بودن ساده و قابلیت اطمینان (بدون اثرات عجیب و نوسانات سیگنال) سیگنال LF را توصیف می‌کند. به همین دلیل، سیگنال LF تنها سیگنالی است که توسط روش صدور گواهینامه آزمون EN12927 مطرح شده است. بدون گذراندن این آزمون، امکان فعالیت در بخش تله کابین وجود ندارد.

 

عیوب ناشی از کاهش سطح مقطع LMA (Loss of Metallic Area)

عیوب ناشی از کاهش سطح مقطع (Loss of Metallic Area-LMA) به‌منظور ارائه‌ی اطلاعات کمی از میزان خسارت وارده به کابل است، به کمک این روش می‌توان نقص‌های موجود (معمولاً خوردگی) کابل های فلزی را تشخیص داد.

نمودار مربوط به این سیگنال عمدتاً به شکل درصد نشان داده می‌شود. تکنسین مربوطه مقدار (-۲، ، -۵، و غیره) روی نمودار را که مربوط به از دست دادن بخش فلزی در یک نقطه مشخص است می‌خواند.

Loss of metallic areaLoss of Metallic Volume

رابطه بین حجم و طول طناب

نام واقعی LMA را می‌توان LMV (از دست دادن حجم فلزی Loss of Metallic Volume) نیز دانست. هنگامی‌که عیبی در یک کابل وجود دارد، در مقاومت مغناطیسی تفاوت زیادی به وجود می‌آید. کابل را می‌توان به‌عنوان یک مقاومت الکتریکی در نظر گرفت که ارزش در نظر گرفته آن بستگی به ویژگی‌های فیزیکی کابل دارد.

ناحیه دارای عیب منطقه‌ای است که در آن آهن با هوایی که مقدار کل مقاومت را تغییر می‌دهد جایگزین شده است. در بحث تقارن مغناطیسی magnetic parallelism  به این پدیده مقاومت (reluctance) گفته می‌شود. هرچه کابل های موردبررسی شکستگی و یا خوردگی بیشتری داشته باشند، مقاومت بیشتر می‌شود، زیرا مانع به جریان درآمدن شار مغناطیسی می‌شود.

دایره آبی در تصویر ۳ نشان‌دهنده نقطه اندازه‌گیری در دستگاه برای تشخیص تغییرات شار است. ممکن است بیان شود که تحت فرضیه خاصی، شار اندازه‌گیری شده متناسب با حجم عیب در کابل است.

 

بین حجم و طول کابل چه نسبتی وجود دارد؟

  • اگر طول عیب بیشتر از طول دستگاه باشد، کاهش حجم متناسب با کاهش مقطع است. فقط تحت این فرضیه LMV با LMA منطبق است.
  • اگر عیب کوتاه‌تر از طول دستگاه باشد همان‌طور که در تصویر زیر نشان داده شده است سیگنال از نظر دامنه سطحش پایین تر یا کمتر است،

LMA signal vs defect length

LF and LMA diagram for a real rope

به همین دلیل است که سیگنال LMA معمولاً برای شناسایی عیوب طولانی» مانند خوردگی، فرسودگی و غیره استفاده می‌شود. به‌طورمعمول برای تشخیص کابل‌های شکسته مناسب نیست.

 

یک سیگنال LMA معمولی در تصویر ۵ نشان داده شده است، کابل تا ۱۹۴ متر در وضعیت خوبی قرار دارد، سپس برای ۳۰ متر حدود ۱۰-۱۵٪ نقص وجود دارد.

LF and LMA diagram for joint point cableway ropemrt-lma-diagram

پدیده اثرات نهایی

اندازه‌گیری LMA مستقیماً به شار اصلی که از داخل کابل عبور می‌کند و مدار مغناطیسی متصل می‌شود. هرگونه تغییر در مسیر شار را می‌توان توسط پروب ها به‌عنوان تغییری در یک بخشی از کابل در نظر گرفت.

این امر مسلماً زمانی که شار به دلیل نقص واقعی روی کابل تغییر می‌کند نیز صادق است، اما گاهی اوقات مسیر میدان مغناطیسی می‌تواند توسط برخی پدیده‌های خارجی مخدوش شود. یک مثال واضح و مکرر “پدیده اثرات نهایی”  (end effects phenomenon) است که چند متر قبل از پایان کابل ظاهر می‌شود.

تصور کنید که آزمایشی را در یک تله کابین انجام دهید، جایی که کابل یک حلقه بسته است. در این حالت، مقدار کابلی که در جلوی دستگاه وجود دارد، در پشت آن نیز یکسان است؛ به عبارت دیگر، پیکربندی مغناطیسی خارجی و خطوط شار یکسان است.

اگر آزمایش را بر روی کابل جرثقیل انجام دهیم، در یک نقطه خاص خاتمه کابل به دستگاه نزدیک می‌شود و مقدار کابل فلزی در پشت و جلوی سیستم متفاوت خواهد بود. این امر باعث ایجاد اعوجاج در خطوط شار می‌شود و درنتیجه سیگنال را تغییر می‌دهد.

تصویر بعدی نمونه‌ای از این پدیده را نشان می‌دهد. در اینجا دستگاه به‌صورت دستی روی کابل حرکت می‌کند، این حرکت از ابتدا (۱ متر کابل در پشت و ۱۰ متر در جلو) شروع شده و تا انتها (وضعیت مخالف) ادامه می‌یابد.

همان‌طور که مشاهده می‌کنید، سطح متوسط نمودار از یک مقدار به مقداری دیگر منتقل می‌شود و این تعبیر غلطی از تغییر است. به‌طور خلاصه، در این آزمایش‌ها آزمایشگاهی که در آن نقص‌ها به‌طور مصنوعی نزدیک به انتهای کابل ایجادشده‌اند، خواندن تغییرات واقعی در سطح مقطع تقریباً غیرممکن است. چرا باید بازرسی میدانی آسان‌تر شود؟

mrt end effects phenomenon

 

حساسیت سیگنال به محیط خارجی

سیگنال LMA نسبت به LF به محیط خارجی بسیار حساس‌تر است. اگر در حین آزمایش برخی از قطعات فلزی به سیستم نزدیک شوند، خطوط شار مغناطیسی تغییر می‌کند و احتمالاً بر روی نتیجه بازرسی تأثیر می‌گذارد. این مهم یکی از دلایلی است که باعث می‌شود دستگاه در یک محیط آزاد قرار گیرد.

درنهایت، باید به خاطر داشته باشیم که نمودار LMA معمولاً بسیار فیلتر شده است که به‌شدت با روش‌های نرم‌افزاری، ظاهر خود نمودار را تغییر می‌دهد. مزیت اصلی این روش این است که ردیابی بهتر تفسیر بهتری ارائه می‌دهد، اما کاربر نهایی باید کنترل تمامی مراحل را حفظ کند. وقتی الگوریتم‌های بسته اعمال می‌شوند و مشتری هیچ کنترلی بر آن‌ها ندارد، ممکن است موقعیت خطرناکی به وجود آید. این وضعیت یک وضعیت کلاسیک است که در آن کاربر به‌خوبی کار می‌کند اما نقطه شروع و درنتیجه بازرسی کاملاً اشتباه است.

 

در نهایت LMA  یا LF ؟

LF ازنظر فنی به‌عنوان پایدارترین سیگنال شناخته می‌شود و تنها نقصی است که کاملاً تنظیم شده است (EN12927). در این سیگنال، عیب و دامنه مستقیماً با هم ارتباط ندارند و بسته به شکل آسیب، می‌توانند از عیبی به عیب دیگر متفاوت باشند. به همین دلیل، تجزیه و تحلیل نیاز به تفسیر کاربر دارد. تحت آموزش مناسب، تکنسین ها قادر خواهند بود نمودارهایی را که به مشتریان خود گواهی وضعیت کابل می‌دهند، به‌درستی بخوانند.
 

بیشتر بخوانید : بازرسی کابل فولادی؛ آنچه نمی‌توانید مشاهده کنید

 LMA یک سیگنال آسان است و این دقیقا ضعف اصلی آن است. متأسفانه خواندن “-۵ “برای تعریف وضعیت واقعی کابل کافی نیست. این امر به نوبه خود‌ خطر بزرگی محسوب می شود؛ زیرا افراد غیرحرفه ای و بدون آگاهی عمیق از این پدیده نیز می‌توانند آن را بخوانند.

از نظر ما، اگر افراد آموزش خوبی در مورد LMA  دیده باشند، این سیگنال می‌تواند یک “سیگنال پشتیبان” خوب برای LF باشد. اگر افراد به‌درستی آموزش ندیده باشند، باید از در نظر گرفتن سیگنال LMA اجتناب کنند.

همچنین در نظر داشته باشید که برخی از دستگاه‌ها وجود دارند که در آن‌ها “سیگنال دوگانه یا ‘dual signal’   (LF+LMA) با استفاده از دو پروب مختلف بدست نمی‌آید ، بلکه با محاسبه ریاضی پیچیده بدست می آید ؛ به عبارت دیگر، گاهی اوقات نمودار LF که روی صفحه می‌بینید فقط مشتق عددی سیگنال LMA است. این ازنظر فیزیکی اشتباه است و هرگونه سیگنال کاذبی که می‌توانید در LMA داشته باشید، در LF نیز منتقل می‌شود؛ به عبارت دیگر، اگر یک سیستم مجهز به LMA باشد، فرد باید بررسی کند که آیا LF نیز موجود است و آیا LF توسط یک مدار پروب جداگانه به دست آمده است یا خیر.

 

منبع : https://www.mennens.nl

بیشتر بخوانید : بهره وری روش MFL در خدمات بازرسی لوله

بیشتر بخوانید : خدمات بازرسی لوله به روش های غیرمخرب

 

بهره وری روش MFL در خدمات بازرسی لوله

بهره وری روش MFL در خدمات بازرسی لوله

 

افزایش میزان عیوب و خرابی در لوله های دیگ های بخار سبب افزایش تعمیرات و در نتیجه افزایش هزینه های نگهداری این تجهیزات گشته است.

خرابی لوله های دیگ های بخار می تواند به دلایل زیر باشد:

  • فشار
  • خوردگی
  • ترک خوردگی
  • خرابی فلز
  • فشار ناشی از خوردگی

تعمیرات لوله های دیگ بخار هزینه بر هستند؛ بنابراین یافتن دلیل خرابی این لوله ها حیاتی است. تجزیه و تحلیل خرابی لوله های دیگ بخار معمولا مربوط به خوردگی، ترک خوردگی، خرابی فلز، فشار ناشی از خوردگی یا مواردی از این دست است.

ترک خوردگی و فشارهای وارد بر لوله که منجر به شکست لوله دیگ بخار می گردند ممکن است به دلایل گسترده ای اتفاق بیفتد. در بسیاری از مواقع این موارد از دید مستقیم  پنهان می مانند.

تجزیه و تحلیل خرابی و آزمایش لوله برای مبدل های حرارتی مانند کندانسورها (condensers) یا محفظه توربین بخار یا مبدل های حرارتی مناسب است.

 مبدل های حرارتی در هر اندازه به طور کلی دارای لوله های بسیار گران قیمت هستند ، بنابراین جایگزینی لوله ها به عهده تصمیم گیرندگان ارشد است. زمان این جایگزینی در مکانیسم های تاسیسات همیشه به وضوح مشخص نیست ، بنابراین تجزیه و تحلیل خرابی لوله دیگ بخار و آزمایش پیوسته شرایط آن ها لازم است.

بیشتر بخوانید: بازرسی غیرمخرب کابل ها و لوله ها به روش نشتی شار مغناطیسی MFL

مناسب ترین روش برای بازرسی لوله

هیچ روش بازرسی واحدی برای انواع مختلف مواد توصیه نمی شود. یک سیستم تک فناوری فقط برای طیف محدودی از کاربردها می تواند استفاده شود. از روش ادی کارنت eddy current (EC) معمولاً برای بازرسی مواد غیرفرومغناطیسی استفاده می شود. در خصوص بهره وری روش MFL در خدمات بازرسی لوله نیز تصویر زیر مقایسه ای از انواع روش ها را در برمی گیرد.

بیشتر بخوانید: خدمات بازرسی لوله به روش های غیرمخرب

 

برای بازرسی از مواد فریت (هیدراکسید اهن) و لوله های فولادی کربن از روش های (RFT) Remotefield testing و نشتی شار مغناطیسی (MFL) استفاده می شود.

تکنیک سیستم بازرسی داخلی دوار فراصوتی The internal rotary inspection system (IRIS) برای پروفیلومتری (profilometry) لوله و نقشه برداری از خوردگی استفاده می شود و یک روش بازرسی معتبر برای ادی کارنت (eddy current) ، آر اف تی RFT (remote field) و نشتی شار مغناطیسی هر ماده است.

Tube-Inspections-suitability

 

بیشتر بخوانید : دستگاه نشت شار مغناطیسی (Magnetic Flux Leakage (MFL

بیشتر بخوانید : بازرسی غیرمخرب کابل ها و لوله ها به روش نشتی شار مغناطیسی MFL

منبع : Tube Inspections Testing Services Singapore, India, Asia

 

مقایسه دو تکنولوژی غیرمخرب MFL و SLOFEC

اصول تست SLOFEC

تکنیک SLOFEC (Saturated Low Frequency Eddy Current) بر پایه اصول اولیه ادی کارنت یا جریان گردابی به همراه میدان مغناطیسی است. با به‌کارگیری مغناطیس کردن با جریان مستقیم، عمق نفوذ خطوط میدان جریان گردابی در مواد فرو مغناطیس افزایش می‌یابد.

در مورد یک عیب، خطوط میدان مغناطیسی دارای دانسیته بالایی هستند که گذردهی نسبی مغناطیسی را تغییر می‌دهد و این تغییرات باعث تغییر در خطوط میدان جریان گردابی می‌گردد.

 


تغییرات خطوط میدان جریان گردابی اندازه‌گیری و اختلاف آن باحالت بدون عیب ازنظر دامنه و فاز مورد مقایسه قرار می‌گیرد.

محاسن SLOFEC 

توانایی آنالیز منحصربه‌فرد فاز سیگنال، دامنه سیگنال و شکل سیگنال ازجمله محاسن ویژه این روش برای ارزیابی موارد زیر را فراهم می‌کند:

  • مقدار عیب در دیواره
  • تشخیص عیوب در بالا یا پایین دیواره
  • آنالیز حجم عیب
  • تشخیص عیب و تورق و … نسبت به همدیگر
  • سازگاری فرکانس برای فاصله‌های هوایی بالاتر
  • قابلیت جداسازی سیگنال نویز از سیگنال عیب

بازرسی به این روش امکان شناسایی عیوب موضعی را با استفاده از سنسورهای دیفرانسیلی جریان گردابی ایجاد می‌کند. در دیاگرام شماره ۲ پاسخ سیگنالی برای عیب کم و عیوب بزرگ‌تر آورده شده است.

 


نتایج حاصل از اسکن برای عیوب داخلی دارای سیگنال با جهت‌گیری عمودی می‌باشند ولی برای عیوب خارجی دارای جهت‌گیری افقی می‌باشند. دیاگرام شماره ۳ نحوه جداسازی سیگنال مربوط به عیب خارجی و داخلی را نشان می‌دهد.


در نرم‌افزار استفاده‌شده برای این روش قابلیت آنالیز سیگنال‌ها ازنظر دامنه و فاز در جهت شناسایی مقدار عیب نیز آورده شده است که درصد عیب را به‌صورت رنگی می‌توان در آن مشاهده کرد.


به دلیل سازگاری فرکانس‌های جریان گردابی و تغییرات خطوط میدان مغناطیسی در داخل ماده، این فنّاوری برای بازرسی مواد از ضخامت دیواره‌های پایین تا بالا را بخصوص در حالتی که پوسس داشته باشد را دارد.

به‌صورت تجربی با این روش قابلیت تست ضخامت ماده تا ۳۳ میلی‌متر و با پوشش تا ۱۰ میلی‌متر فراهم شده است.

این روش نسبت به روش آلتراسونیک که اندازه واقعی کاهش ضخامت دیواره را مشخص می‌کند نبوده بلکه به‌صورت نسبی تغییرات را نسبت به نمونه مرجع سنجیده و گزارش می‌دهد. لذا نمونه مرجع استفاده شده تا حد امکان باید مشابه نمونه تست ازنظر ابعاد و خواص مکانیکی باشد.

محاسن روش MFL

برخی محاسن مربوط به این روش به شرح زیر است:

  • قابلیت بازرسی مواد مغناطیسی و غیرمغناطیسی
  • مثل مواد کربن استیل، ضدزنگ، مواد دوبکس سا دوفازی و سوپر دوبلکس
  • سرعت بازرسی بالاتر
  • بازرسی در دماهای بالاتر تا ۱۵۰ درجه سانتی‌گراد
  • قابلیت اطمینان و حساسیت بالای روش
  • تشخیص عیوب بالا یا پایین جداره
  • قابلیت اسکن بلادرنگ نتایج به‌صورت رنگی

 

تفاوت بین SLOFEC و MFL

به دلیل ماهیت الکترومغناطیسی این روش با روش MFL مورد مقایسه قرار می‌گیرد. مطالعاتی بر روی این روش در جهت شناسایی و حساسیت نسبت به عیب برای محدوده مشخصی از ضخامت‌ها انجام شده است. عیب به‌صورت یک عیب نیمکره‌ای در ورق‌ها باضخامت‌های مختلف طبق شکل انجام شده است. نتایج نشان می‌دهد که این روش دارای حساسیت بالایی است.


بیشتر بخوانید : ارزیابی سلامت کابل  سیم بکسل های مهار برج آتش (Flare) با تکنیک غیر مخرب نشت شار مغناطیسی MFL

منبع:

https://silo.tips/download/s-l-o-f-e-c-fast-corrosion-screening-technique

کلیدواژه:

نشتی شار مغناطی

 

 

عیدانه مپوا

عیدانه مپوا

خوب سال ۱۳۹۸ هم با تمام خوبی ها و بدی هاش تمام شد. در این سال اتفاقات زیادی در شرکت مپوا رخ داد و این شرکت تجربه های متفاوتی رو کسب کرد. حالا که نزدیک سال جدید هستیم مطلبی را با عنوان «عیدانه مپوا» تقدیم شما خواهیم کرد که در آن چند تن از اعضای مپوا در مورد سالی که گذشت نظرات خود را بیان می دارند:

.

دکتر امیر رفاهی اسکوئی (مدیرعامل):

سال ۹۸ نقطه عطف مپوا بود به دلیل موفقیت های شرکت در فروش محصولات آکوستیک امیشن و برپایی نمایشگاه نفت و ساخت داخل و در آخر سال که با گرفتن مجوزهای ساخت دستگاه پالس اکسیمتر و تولید آن مواجه شد که تهدیدهای کرونا ویروس رو تبدیل به فرصت کرد.
جا دارد از تک تک دوستان و همکاران که با تلاش مضاعف خود باعث سر بلندی مپوا شدن تشکر و قدردانی بکنیم.
سال ۹۹ هم صد در صد سال پربار و درخشانی در تاریخ مپوا خواهد بود بخصوص با عرضه محصولات و خدمات جدید.
این ضرب المثل رو هم همیشه تو ذهنمون باید باشه که :
“رویاها برای کسانی است که در خوابند”

Dreams are for those who sleep

.

محسن صدری (نایب رئیس هیات مدیره):

شاید بشه اینطور شروع کرد که تلاش و امید در کنار یک همدلی کم نظیر، سرمایه ای بوده که هر ساله بیش از سال قبل تو حساب دلهای ما تو مپوا پر و پرتر شده؛ یادمه یه روز یه دوستی تو اوایل کار تیم مون بهمون گفت، شما که انقدر بی چشم داشت و به دور از منیت دارین تلاش می کنین، این خیلی عالیه، ولی الان که پولی نیست و جایگاهی نیست اینطوریه؛ اگه پولا اومد تو حساب های بانکی شرکت و هنوز همین طور بودین، اونوقت باید بهتون آفرین گفت.
از اون روز حدود ۷ سال گذشته؛ حساب های شرکت هم خیلی پر و خالی شده، اما چیزی که هیچ وقت خالی نشده شاید همین سه کلمه امید، تلاش و همدلی بوده که به لطف خدا هرروز بیشتر و بیشتر سرلحوحه ما بوده.

سال ۹۸

اما ۹۸؛ سالی پر از استرس، چالش و البته دستاوردهای جدید؛
شاید مهمترین هاش رو بشه بحث های فنی دونست و دستگاه هایی که تحویل شدند یا نمونه های صنعتی شون آماده تجاری سازی؛ اما به نظر من دستاوردهایی مهم تر از اون هم بوده که برخی اش رو گفتن بد نیست:

اصلاح ساختار سازمانی تیم و قرار گرفتن در مسیر بهبود استانداردهای فرآیندی مجموعه.
انتخاب آقای دکتر رفاهی به عنوان هیات مدیره انجمن تست های غیرمخرب ایران.
ترمیم تیم اداری و فروش و فعال تر شدن محتوای وب سایت مپوا.
ثبت شرکت گیتی سپند و تفکیک حوزه های تخصصی دو شرکت.
مذاکرات جدی با برخی سرمایه گذاران تخصصی برای توسعه بازار.
تحریم ها و اثرات مثبتی که روی تقاضای محصولات مون داشتند.
و اخریش هم کرونا و استرس هاش و البته تقاضای فوق العاده ای که برای تولید انبوه پالس از دلش دراومد شاید یه جورایی یه جسن ختام باشکوه بود از این درس تکراری که حکمت خداوند در طول تلاش ها و قابلیت های انسان ها قرار میگیره و تعویق استجابت دعاهامون به معنای کم لطفی نیست؛ شکیبا باید بود و راضی به آنچه معبود برامون مقدر کرده در راستای تلاش هایی که داشتیم.
همه این حدود ۹ – ۱۰ سال فعالیت حالا مپوا رو در آستانه ۹۹ با تمام فراز و نشیب ها به یک تفکر جدید تبدیل خواهد کرد. انشالا…
تفکری بر مبنای روشن کردن شمع هایی ولو اندک و کوچک که در این سازمان مقدس جایگزین نفرین های بی ثمر مرسوم، بر تاریکی شده اند.
همیشه ایدال نیستیم اما همین که رو به بهبودیم خداروشکر.

از شوماخر پرسیدن رمز موفقیتت چی بود
گفت تو پیچها که همه ترمز میکردن، من گاز میدادم

.

مسعود صدری (مدیر دپارتمان کسب و کار):

سال ۹۸ پر از روزهای تلخ و شیرین بود؛ پر از شکست و ناامید نشدن و تلاش و تلاش و تلاش تا رسیدن؛ از اضافه شدن همکاران و دوستای فوق العاده بگیر تا فروش اولین دستگاه آکوستیک امیشن، نهایی شدن پالس اکسیمتر، نهایی شدن دستگاه mfl،  اجرای موفق جشنواره استار پوزال، برگزاری انواع و اقسام دوره ها (از دوره آکوستیک امیشن گرفته تا دوره های کسب و کار دانش بنیان تو ۶ تا استان)، تولد گیتی سپند و بزرگ و بزرگ تر شدن مپوا، پخته تر و بالغ تر شدن دستگاه ها از نظر فنی در کنار یه سایت حرفه ای و درجه یک.
اگه بخوام خیلی خلاصه بگم تیم تر شدیم و هماهنگ تر و همدل تر؛ سختی و چالش و گره های کور هم کم نداشتیم که الان دیگه همشون فقط تجارب ارزشمندن و قوی ترمون کردن.

حسنا نصیریان (الکترونیک):

با تمام خوبی ها و بدی ها، روزهای سخت و آسون، برگ دیگه ای از دفتر روزگار ورق خورد و یک سال دیگه گذشت.
سال ۹۸ نه تنها برای ایران بزرگ, بلکه برای مپوایی های عزیز هم سالی پر از چالش و روزهای مملو از سختی بود. با تمامی این اوصاف با همت و اتحاد تمامی اعضای خانواده بزرگ مپوا و با توکل به پروردگار مهربان، سرانجامی نکو و پیشرفت شایان ذکری در حوزه آکوستیک امیشن, دستگاه MFL و پالس اکسی متر حاصل گردید و سالی درخشان را رقم زد.
حالا ک در آستانه سال جدید هستیم از خداوند منان سالی سرشار از سلامتی, اتحاد, همدلی, موفقیت های روز افزون, روشن بینی و مهربانی برای تمامی مردم ایران زمین علی الخصوص مجموعه ی بی نظیر مپوا طلب میکنم.
روزهاتون بهاری و بهارتون جاودان باد.

.

محمد امین سفیدیان (دیجیتال مارکتینگ):

سال ۱۳۹۸ با تمام فراز و نشیب هایش تمام شد. اتفاقات عجیبی در این سال افتاد که حتی تا آخرین روزهایش هم قابل پیش بینی نبود (درست مانند همین ویروس کرونا)؛ البته می توانیم بگوییم که در ایران اتفاقات عجیب زیادی رخ میدهد و شاید ما هم عادت کرده ایم به این همه بهم ریختگی ! اما نکته اینجاست که در شرایط وجود این همه مشکلات، سروپا نگه داشتن یک کسب و کار امری بس دشوار است. خیلی از افراد با وجود این شرایط اصلا به سمت ایجاد کسب و کار نمی روند یا خیلی ها وسط راه کم می آورند؛ البته سخت تر از شکل دادن به یک کسب و کار، حفظ و نگهداری آن است.

خوشبختانه شرکت مپوا از آن مجموعه های قوی است که با گذر زمان و هر روز پیشرفتی را در کارنامه خود ثبت می کند و توانسته از آرمان های خود به خوبی حفاظت کند. تولید و بومی سازی دستگاه هایی که حتی نمونه های خارجی آن ها هم کم هستند درست منطبق با هدف سال گذشته یعنی رونق تولید ملی است و فارغ از تمام مسائل مایه افتخار و مباهات برای کشورمان است. تمام این ها را گفتم تا به این حرف برسم که خیلی خوشحالم که من هم عضو کوچکی از این مجموعه کاربلد هستم و امیدوارم این تیم در سال جدید هم روز به روز شاهد رشد های چشم گیر تری باشد و من هم بتوانم نقشی هر چند کوچک در این پیشرفت داشته باشم.

ارزیابی سلامت کابل  سیم بکسل های مهار برج آتش (Flare) با تکنیک غیر مخرب نشت شار مغناطیسی MFL

ارزیابی سلامت کابل  سیم بکسل های مهار برج آتش (Flare) با تکنیک غیر مخرب نشت شار مغناطیسی MFL

برج‌های آتش (Flares) در صنایع گاز و نفت به‌عنوان یکی از تجهیزات جلوگیری از ورود آلاینده‌های خطرناک هیدروکربنی در اتمسفر به شمار می‌روند. برج آتش یک وسیله احتراق گاز است که در صنایعی چون پتروشیمی‌ها، صنایع شیمیایی، پالایشگاه‌های گاز طبیعی همچنین در سایت‌های تولیدات گازی و نفتی دارای چاه‌های نفت، گاز، دکل‌های نفتی و گازی و دفن زباله‌های دریایی کاربرد دارد.

در کارخانجات صنعتی، برج‌های آتش برای سوزاندن گازهای آزادشده توسط شیرهای فشارشکن مورد استفاده دارد. در حین استارت و خاموش برخی کارخانجات و پالایشگاه‌ها، برج آتش برای احتراق‌های گاز برنامه‌ریزی‌شده در طول دوره کوتاه مورد استفاده قرار می‌گیرد.

این برج‌ها به‌طور عمومی مطابق شکل نشان داده‌شده به چند قسمت تقسیم می‌شوند:

  • خود پشتیبان
  • مهارشده توسط دکل یا دیرک
  • مهارشده توسط کابل سیم بکسل

.

ارزیابی سلامت

سلامت برج‌های آتش توسط روش‌های مختلفی قابل ارزیابی است که به شرح زیر می‌باشند:

بازرسی چشمی

استفاده از روش غیر مخرب MFL

تمیزکاری و روان کاری سیم بکسل ها

تأییدیه سلامت برج‌ها

ارزیابی میران کشش کابل‌های سیم بکسل

.

سیم بکسل ها

سیم بکسل های به‌عنوان طناب‌های کششی جهت برقراری پایداری و تعادل در سازه‌ها طراحی و مورد استفاده دارند. در شکل تعاریف اولیه برای بخش‌های مختلف سیم بکسل آورده شده است.

وایر یا مفتول

استرند (کلاف) یا مجموعه‌ای از مفتول‌ها

هسته: مجموعه‌ای از مفتول‌های قرارگرفته در مرکز طناب

طناب: مجموعه کلاف‌های احاطه‌کننده هسته

پیکربندی‌های مختلفی برای سیم بکسل ها مدنظر است. این سیم بکسل ها برای کاربردهای مختلفی طراحی و استفاده می‌شوند.

.

چرایی بازرسی کابل سیم بکسل ها

کابل‌های سیم بکسل به دلایل زیادی خراب شده و استحکام خود را در طول عمر مفیدشان از دست می‌دهند. در طول عملکردشان در طول دوره‌های زمانی بلند، خرابی‌های مختلفی مثل خوردگی و شکستگی مفتول‌ها به خاطر دما، بارگذاری‌های مختلف، عوامل محیطی و باد در آن‌ها به وقوع می‌پیوندد. این کابل‌ها مثل زنجیر می‌باشند اگر یک عضو دچار شکستگی یا آسیب شود کل زنجیره دچار گسیختگی می‌گردد. به همین صورت اگر مفتول‌های طناب دچار شکست شوند در این صورت باعث افزایش تمرکز تنش به دلیل بارگذاری‌های مختلف شده و استحکام آن پایین می‌آید و درنتیجه سیم بکسل دچار گسیختگی می‌گردد. در شکل زیر شکل‌های مختلف خرابی آورده شده است.

.

چه موقعی این طناب‌های کارایی خود را از دست می‌دهند باید دور انداخته شوند؟

در شروع راه‌اندازی سیم بکسل ها بعد از نصب، سیم و رشته‌های در حین به‌کارگیری در جای خود قرار می‌گیرند و قدرت شکستن طناب افزایش می‌یابد. پس از رسیدن به حداکثر خود سرعت آن کاهش می‌یابد. بازرسی دوره‌ای و روان کاری برای حفظ قابلیت اطمینان سیم‌های برج آتش و یکپارچگی آن‌ها الزامی است. برای عملکرد امن، سیم بکسل ها باید به‌صورت دوره‌ای مورد بازرسی قرار بگیرند و طی یک دوره‌ای باید دور انداخته شوند. دور انداختن سیم بکسل ها قبل از موعد مقرر پرهزینه است. داده‌های بازرسی این امکان را به وجود می‌آورد که تصمیم منطقی در مورد دور انداختن یا بکار گرفتن سیم بکسل ها گرفته شود.

.

بازرسی چشمی

 بازرسی چشمی به‌صورت دوره‌ای برای شناسایی ناپیوستگی‌های سطحی می‌تواند قرار بگیرد؛ اما این بازرسی‌ها قابل‌اطمینان نمی‌باشند. برای رسیدن به یک بازرسی کامل، قابل‌اطمینان، کمی و تحلیلی روش غیر مخرب نشتی شار مغناطیسی MFL می‌تواند کارساز باشد.

.

روش بازرسی نشتی شار مغناطیسی MFL

برطبق سیستم‌های در حال عملکرد، روش غیر مخرب می‌تواند در جهت ارزیابی شرایط سیم بکسل ها بکار گرفته شود که می‌تواند امنیت، اطمینان و عمر سرویس‌دهی سیسم بکسل ها را نشان دهد. برای شناسایی مفتول‌های شکسته شده سطحی و زیرسطحی، خوردگی‌ها و آسیب‌های مکانیکی، ساییدگی‌ها روش نشتی شار مغناطیسی می‌تواند کارساز باشد.

بخشی از کابل قرارگرفته در کلگی مغناطیسی ازنظر مغناطیسی توسط آهنرباهای قوی در جهت طولی یا محوری اشباع می‌شود. میدان مغناطیسی بالای سطح سیم بکسل تا زمانی که ناپیوستگی در کابل وجود نداشته باشد یکنواخت باقی می‌ماند. سنسورهای هال و کویل های مغناطیسی در اطراف کابل مقادیر ثابتی را ثبت می‌کنند. زمانی که سطح مقطع کابل تغییر کند میدان مغناطیسی دچار امواج می‌شود و نشتی شار مغناطیسی به‌صورت موضعی یا محلی افزایش می‌یابد. این ناپیوستگی‌ها توسط سنسورهای مغناطیسی ثبت می‌شوند. سیگنال‌های دریافت شده از سنسورها به یک سیستم مرکزی فرستاده شده و ذخیره می‌شوند و برای پردازش‌های بعدی مورد استفاده قرار می‌گیرند.

.

سیگنال سنسورها

دو نوع سیگنال سنسور برای بازرسی نشتی مورد استفاده قرار می‌گیرد که به شرح زیر است:

عیب محلی LF: برای شناسایی مفتول‌های شکسته شده (داخلی یا خارجی) سیگنال‌های کیفی را ارائه می‌کند.

عیب کاهش سطح مقطع LMA: برای محاسبه سطح مقطع، سیگنال‌های کمی را ارائه می‌کند.

عیب محلی یا Local Flaw (LF) – یک ناپیوستگی در کابل سیم بکسل مانند مفتول‌های شکسته یا آسیب‌دیده، خوردگی مفتول‌ها یا پیتینگ، شیارهای سایشی، ایجادشده بر روی مفتول‌ها و هر شرایط فیزیکی دیگری که باعث کاهش سلامت کابل به‌صورت موضعی شود.

کاهش سطح مقطع Loss of Metallic Cross-Sectional Area (LMA)- اندازه‌گیری نسبی مقدار جرم یا ماده ازدست‌رفته در یک‌بخشی از طول کابل با مقایسه یک نقطه نسبت به نقطه مرجع که بیانگر ماکزیمم مقدار کاهش سطح مقطع است.

داده‌های به‌دست‌آمده از یک کابل با قطر ۳۲mm و پیکربندی ۶×۳۶ در زیر آورده شده است. سیگنال‌های LF نشانگر مفتول‌های شکسته و LMA بیانگر مفتول‌های از دست داده‌شده می‌باشند.

منبع: 

https://www.linkedin.com/pulse/integrity-assessment-guy-wire-rope-supported-flare-stack-dharman/

بیشتر بخوانید:

روش نشتی شار مغناطیسی – بخش دوم

روش نشتی شار مغناطیسی – بخش دوم

نشتی شار مغناطیسی Magnetic Flux Leakage

نشتی شار مغناطیسی یکی از روش‌های آزمون‌های غیر مخرب است که برای شناسایی خوردگی ، ترک‌هایی محیطی و کاهش ضخامت دیواره سطح لوله‌ها و تیوپ‌های فولاد کربنی، نیکیل، فولاد ضدزنگ بکار می‌رود. این روش به‌طورمعمول برای بازرسی کول‌های هوا و تیوب‌های بویلرهای حرارتی بکار برده می‌شود. این روش ازنظر قابلیت سایزبندی عیب دارای محدودیت‌هایی است دامنه سیگنال نشتی شار مغناطیسی از تغییرات سرعت حرکت سنسور مغناطیسی تأثیر می‌پذیرد و سیگنال دارای مؤلفه فاز نیست؛ بنابراین این محدودیت در جهت شناسایی روش نشتی مغناطیسی بیشتر عمل می‌کنند تا پیدا کردن اندازه عیب. بازرسی تقریباً در این روش سریع است و سرعت حرکت سنسور تا بر ۱m/s هم می‌رسد. همچنین این روش برای شناسایی و افزایش حساسیت نیازمند این است که سنسور در مرکز تیوب یا لوله‌ها قرار بگیرد. اصل حاکم بر این روش بر اساس مغناطیس کردن استوار است. دو آهنربا در هسته لوله فولادی به‌طوری باید قرار بگیرند که باعث مغناطیس شدن دیواره و به اشباع رسیدن میدان در داخل دیواره گردند. برای این منظور از سه کویل استفاده می‌شود که هرکدام به عیب خاصی حساس می‌باشند.

.

شناسایی کاهش ضخامت دیواره تیوب‌ها

برای شناسایی کاهش ضخامت دیواره تیوب‌ها، از یک کویلی استفاده می‌شود که در مود مطلق قرار دارد. این کویل به دور یک هسته از جنس فولاد پیچیده می‌شود که دارای دو آهنربا است. این کویل توان میدان مغناطیسی ایجاد شده توسط آهنرباها را اندازه می‌گیرد؛ بنابراین جاهایی که کاهش ضخامت یا خوردگی ایجاد می‌گردد حتی اگر تغییرات شار میدان مغناطیسی هم اتفاق نیفتد قدرت یا توان میدان کاهش می‌یابد و این تغییرات قابل‌شناسایی است.

.

شناسایی پیتینگ

برای شناسایی پیتینگ، از یک کویل راهبر استفاده می‌شود. این کویل بر روی کویل مطلق پیچیده می‌شود و بین دو آهنربا قرار می‌گیرد. زمانی که میدان مغناطیسی از بخش پیتینگ عبور می‌کند یک مقداری میدان دچار اعوجاج می‌شود و این اعوجاج باعث نشتی میدان از خارج جداره تیوب یا لوله می‌گردد. کویل راهبر این میدان را شناسایی و این کویل قابلیت شناسایی این را ندارد که آیا عیب در داخل جداره است یا بیرون جداره. برای پیدا کردن محل پیتینگ، نیازمند یک کویل سومی هست به نام کویل دنباله که قابلیت شناسایی عیوب داخلی و خارجی را نسبت به هم دارد.

منبع:

https://www.zener-group.com/knowledge-base/magnetic-flux-leakage-mfl/

بیشتر بخوانید: عملکرد نشتی شار مغناطیسی در عیب‌یابی خوردگی کف مخازن

عملکرد نشتی شار مغناطیسی در عیب یابی خوردگی کف مخازن

عملکرد نشتی شار مغناطیسی در عیب‌یابی خوردگی کف مخازن

Magnetic Flux Leakage for Corrosion Mapping of Storage Tank Floor

در این متن عملکرد نشتی شار مغناطیسی در عیب یابی خوردگی کف مخازن مورد بررسی قرار می گیرد.

ساختار اولیه بازرسی به روش MFL در شکل ۱ نشان داده شده است. این شکل نشان‌دهنده یک اسکنر MFL است که توسط شرکت silverwing طراحی و ساخته شده است. این وسیله از یک یوک مغناطیسی و مجموعه‌ای از سنسورهای مغناطیسی که در یک راستا چیده شده‌اند تشکیل‌شده است؛ تا در هر بار اسکن بتواند سطح مشخصی را تحت پوشش قرار داده و بازرسی کند. تمامی این ملزومات در بخش پایینی اسکنر تعبیه می‌شود. این مجموعه بر روی سطح فولادی قرار گرفته و توسط یک سیستم محرک در جهات مختلف حرکت می‌کند. معمولاً جهت یوک و سنسورها نسبت به جهت حرکت درجه اختلاف دارد.

.

نحوه ثبت داده

سطح مقطع این اسکنر در شکل ۲ نشان داده شده است. سیگنال نشتی مغناطیسی در اثر حرکت یوک و سنسور بر روی سطح صفحه فولادی و جمع‌آوری داده‌های حاصل از سنسورها حاصل می‌شود.

نحوه ثبت داده در یک سنسور به شرح زیر است:

میدان مغناطیسی توسط یوک مغناطیسی و قطب‌های آهنربا بر روی صفحه فولادی القا می‌شود.

القای مغناطیسی در حدی است که باعث اشباع میدان در راستای ضخامت صفحه می‌گردد.

در صورت عدم وجود عیب در صفحه فلزی فولادی میدان کاملاً یکنواخت در راستای ضخامت پخش می‌گردد؛ ولی درصورتی‌که عیبی در راستای ضخامت وجود داشته باشد یا خوردگی در راستای ضخامت اتفاق افتاده باشد در این صورت به دلیل مقاومت مغناطیسی ایجادشده جریان شار میدان مغناطیسی باعث می‌شود؛ که مقداری از میدان به بیرون از صفحه راه یابد که به این پدیده نشتی شار میدان مغناطیسی گفته می‌شود؛ که این مسیر طبیعی جریان میدان مغناطیسی را تشکیل می‌دهد و از بالا و پایین صفحه منتشر می‌شود. معمولاً در مورد کف مخازن به یک سطح از مخزن دسترسی وجود دارد و سطح پایینی کف مخزن غیرقابل دسترسی است. با روش MFL بدون دسترسی به سطح پایینی صفحه می‌توان مقدار خوردگی آن را مورد تجزیه‌وتحلیل قرار داد.

.

ترکیب روش MFL با تکنولوژی‌های دیگر

ازآنجایی‌که برخی خوردگی‌ها در سطح پایینی صفحه یا کف مخزن اتفاق می‌افتد و برخی از آن‌ها در سطح بالایی صفحه ممکن است ظاهر شوند لذا ازنظر شناسایی توسط روش MFL یک سیگنال را دریافت می‌کنند و تفاوتی ازنظر اثربخشی بر روی سنسورهای مغناطیسی داده بردار ندارند. لذا برخی وقت‌ها روش MFL برای عملکرد نشتی شار مغناطیسی در عیب یابی خوردگی کف مخازن با تکنولوژی‌های دیگری ترکیب می‌شود تا بتواند عیوب پایین صفحه را از عیوب بالایی متمایز و تفکیک کند. این تکنولوژی به نام استارز STARS یا Surface topology air reluctance System معروف است. این تکنولوژی که از روش‌های تست غیر مخرب جدید است در جهت شناسایی تغییرات شار مغناطیسی ایجادشده در سطح صفحه فولادی عمل می‌کند. بطوریکه عیوب سطح بالایی صفحه باعث تغییر جریان شار مغناطیسی شده و این تغییرات توسط استارز قابل‌شناسایی است.

روش استارز از مجموعه‌ای از سنسورها مکمل دیگری بین صفحه و قطب مغناطیسی یوک استفاده می‌کند. وقتی‌که فاصله بین یوک مغناطیسی و سطح بالایی صفحه افزایش می‌یابد. دانسیته شار مغناطیسی کاهش می‌یابد؛ بنابراین هر تغییراتی در سطح بالایی صفحه فولادی (در اثر وجود عیب) باعث تغییر دانسیته شار در فاصله هوایی شده و این تغییرات توسط سنسورهای خاص این کار اندازه‌گیری و ثبت می‌گردد.

منبع:

https://eddyfi.com/en/technology/magnetic-flux-leakage-mfl-tank-inspection

عیب یابی گرده‌ها و لوله‌های فولادی به روش نشتی شار مغناطیسی با جریان متناوب

عیب یابی گرده‌ها و لوله‌های فولادی به روش نشتی شار مغناطیسی با جریان متناوب

در روش نشتی شار مغناطیسی، خطوط میدان در داخل قطعه مغناطیس پذیر نفوذ کرده و بر اساس قرار گیری خطوط میدان نسبت به هم می تواند عیوب موجود در دیواره لوله ها و یا قطعات میلگرد فولادی را شناسایی کند. در برخی از این روش ها منبع ایجاد میدان مغناطیسی از طریق سیم پیچ ها و با بهره گیری از جریان متناوب ایجاد می گردد. جریان مغناطیسی بر روی سیم پیچ هایی که بر روی یوک قرار گرفته اند ایجاد می گردد و این یوک ها به فاصله خیلی کمی از قطعه مورد تست قرار می گیرند که باعث عبور خطوط میدان مغناطیسی از داخل قطعه می شود. در وسط یوک مغناطیسی از سنسورهای حساس به میدان مغناطیسی استفاده می شود. این سنسورها در صورت وجود نشتی شار مغناطیسی آن را شناسایی و مورد ارزیابی قرار می دهند. معمولاً از دو یوک مغناطیسی در اطراف قطعه مورد تست و به زاویه ۱۸۰ درجه نسبت به هم استفاده می شود.

این وضعیت قرار گیری یوک ها نسبت به هم کارایی بیشتری در شناسایی عیوب و حساسیت تجهیزات تست دارد. از آنجایی که برای قطعات حجیم کل سطح جشم در یک نقطه مشخص قابل ارزیابی و اسکن نمی باشد، لذا با به چرخش در آوردن یوک های مغناطیسی حول محیط قطعه کار می توان کل سطح را اسکن و عیب یابی نمود.

مزایا

از جمله مزایای این روش به موارد زیر می توان اشاره کرد:

  • عیوب به ریزی ۱ میلی متر توسط این روش قابل شناسایی است.
  • حساسیت نسبتا بالا این روش برای شناسایی عیوب محوری یا در راستای طولی میل گرد های فولادی.
  • نیازی به استفاده از از ماده واسط یا کوپلنت ندارد.
  • نتایج با قابلیت اطمینان بالا و قابلیت تکرار پذیری بالا را دارد.

منبع : http://www.natts.co.in/product/magnetic-flux-leakage-testing-mflt/

بیشتر بخوانید: نشتی شار مغناطیسی

.