نوشته‌ها

ارزیابی سلامت کابل  سیم بکسل های مهار برج آتش (Flare) با تکنیک غیر مخرب نشت شار مغناطیسی MFL

ارزیابی سلامت کابل  سیم بکسل های مهار برج آتش (Flare) با تکنیک غیر مخرب نشت شار مغناطیسی MFL

برج‌های آتش (Flares) در صنایع گاز و نفت به‌عنوان یکی از تجهیزات جلوگیری از ورود آلاینده‌های خطرناک هیدروکربنی در اتمسفر به شمار می‌روند. برج آتش یک وسیله احتراق گاز است که در صنایعی چون پتروشیمی‌ها، صنایع شیمیایی، پالایشگاه‌های گاز طبیعی همچنین در سایت‌های تولیدات گازی و نفتی دارای چاه‌های نفت، گاز، دکل‌های نفتی و گازی و دفن زباله‌های دریایی کاربرد دارد.

در کارخانجات صنعتی، برج‌های آتش برای سوزاندن گازهای آزادشده توسط شیرهای فشارشکن مورد استفاده دارد. در حین استارت و خاموش برخی کارخانجات و پالایشگاه‌ها، برج آتش برای احتراق‌های گاز برنامه‌ریزی‌شده در طول دوره کوتاه مورد استفاده قرار می‌گیرد.

این برج‌ها به‌طور عمومی مطابق شکل نشان داده‌شده به چند قسمت تقسیم می‌شوند:

  • خود پشتیبان
  • مهارشده توسط دکل یا دیرک
  • مهارشده توسط کابل سیم بکسل

.

ارزیابی سلامت

سلامت برج‌های آتش توسط روش‌های مختلفی قابل ارزیابی است که به شرح زیر می‌باشند:

بازرسی چشمی

استفاده از روش غیر مخرب MFL

تمیزکاری و روان کاری سیم بکسل ها

تأییدیه سلامت برج‌ها

ارزیابی میران کشش کابل‌های سیم بکسل

.

سیم بکسل ها

سیم بکسل های به‌عنوان طناب‌های کششی جهت برقراری پایداری و تعادل در سازه‌ها طراحی و مورد استفاده دارند. در شکل تعاریف اولیه برای بخش‌های مختلف سیم بکسل آورده شده است.

وایر یا مفتول

استرند (کلاف) یا مجموعه‌ای از مفتول‌ها

هسته: مجموعه‌ای از مفتول‌های قرارگرفته در مرکز طناب

طناب: مجموعه کلاف‌های احاطه‌کننده هسته

پیکربندی‌های مختلفی برای سیم بکسل ها مدنظر است. این سیم بکسل ها برای کاربردهای مختلفی طراحی و استفاده می‌شوند.

.

چرایی بازرسی کابل سیم بکسل ها

کابل‌های سیم بکسل به دلایل زیادی خراب شده و استحکام خود را در طول عمر مفیدشان از دست می‌دهند. در طول عملکردشان در طول دوره‌های زمانی بلند، خرابی‌های مختلفی مثل خوردگی و شکستگی مفتول‌ها به خاطر دما، بارگذاری‌های مختلف، عوامل محیطی و باد در آن‌ها به وقوع می‌پیوندد. این کابل‌ها مثل زنجیر می‌باشند اگر یک عضو دچار شکستگی یا آسیب شود کل زنجیره دچار گسیختگی می‌گردد. به همین صورت اگر مفتول‌های طناب دچار شکست شوند در این صورت باعث افزایش تمرکز تنش به دلیل بارگذاری‌های مختلف شده و استحکام آن پایین می‌آید و درنتیجه سیم بکسل دچار گسیختگی می‌گردد. در شکل زیر شکل‌های مختلف خرابی آورده شده است.

.

چه موقعی این طناب‌های کارایی خود را از دست می‌دهند باید دور انداخته شوند؟

در شروع راه‌اندازی سیم بکسل ها بعد از نصب، سیم و رشته‌های در حین به‌کارگیری در جای خود قرار می‌گیرند و قدرت شکستن طناب افزایش می‌یابد. پس از رسیدن به حداکثر خود سرعت آن کاهش می‌یابد. بازرسی دوره‌ای و روان کاری برای حفظ قابلیت اطمینان سیم‌های برج آتش و یکپارچگی آن‌ها الزامی است. برای عملکرد امن، سیم بکسل ها باید به‌صورت دوره‌ای مورد بازرسی قرار بگیرند و طی یک دوره‌ای باید دور انداخته شوند. دور انداختن سیم بکسل ها قبل از موعد مقرر پرهزینه است. داده‌های بازرسی این امکان را به وجود می‌آورد که تصمیم منطقی در مورد دور انداختن یا بکار گرفتن سیم بکسل ها گرفته شود.

.

بازرسی چشمی

 بازرسی چشمی به‌صورت دوره‌ای برای شناسایی ناپیوستگی‌های سطحی می‌تواند قرار بگیرد؛ اما این بازرسی‌ها قابل‌اطمینان نمی‌باشند. برای رسیدن به یک بازرسی کامل، قابل‌اطمینان، کمی و تحلیلی روش غیر مخرب نشتی شار مغناطیسی MFL می‌تواند کارساز باشد.

.

روش بازرسی نشتی شار مغناطیسی MFL

برطبق سیستم‌های در حال عملکرد، روش غیر مخرب می‌تواند در جهت ارزیابی شرایط سیم بکسل ها بکار گرفته شود که می‌تواند امنیت، اطمینان و عمر سرویس‌دهی سیسم بکسل ها را نشان دهد. برای شناسایی مفتول‌های شکسته شده سطحی و زیرسطحی، خوردگی‌ها و آسیب‌های مکانیکی، ساییدگی‌ها روش نشتی شار مغناطیسی می‌تواند کارساز باشد.

بخشی از کابل قرارگرفته در کلگی مغناطیسی ازنظر مغناطیسی توسط آهنرباهای قوی در جهت طولی یا محوری اشباع می‌شود. میدان مغناطیسی بالای سطح سیم بکسل تا زمانی که ناپیوستگی در کابل وجود نداشته باشد یکنواخت باقی می‌ماند. سنسورهای هال و کویل های مغناطیسی در اطراف کابل مقادیر ثابتی را ثبت می‌کنند. زمانی که سطح مقطع کابل تغییر کند میدان مغناطیسی دچار امواج می‌شود و نشتی شار مغناطیسی به‌صورت موضعی یا محلی افزایش می‌یابد. این ناپیوستگی‌ها توسط سنسورهای مغناطیسی ثبت می‌شوند. سیگنال‌های دریافت شده از سنسورها به یک سیستم مرکزی فرستاده شده و ذخیره می‌شوند و برای پردازش‌های بعدی مورد استفاده قرار می‌گیرند.

.

سیگنال سنسورها

دو نوع سیگنال سنسور برای بازرسی نشتی مورد استفاده قرار می‌گیرد که به شرح زیر است:

عیب محلی LF: برای شناسایی مفتول‌های شکسته شده (داخلی یا خارجی) سیگنال‌های کیفی را ارائه می‌کند.

عیب کاهش سطح مقطع LMA: برای محاسبه سطح مقطع، سیگنال‌های کمی را ارائه می‌کند.

عیب محلی یا Local Flaw (LF) – یک ناپیوستگی در کابل سیم بکسل مانند مفتول‌های شکسته یا آسیب‌دیده، خوردگی مفتول‌ها یا پیتینگ، شیارهای سایشی، ایجادشده بر روی مفتول‌ها و هر شرایط فیزیکی دیگری که باعث کاهش سلامت کابل به‌صورت موضعی شود.

کاهش سطح مقطع Loss of Metallic Cross-Sectional Area (LMA)- اندازه‌گیری نسبی مقدار جرم یا ماده ازدست‌رفته در یک‌بخشی از طول کابل با مقایسه یک نقطه نسبت به نقطه مرجع که بیانگر ماکزیمم مقدار کاهش سطح مقطع است.

داده‌های به‌دست‌آمده از یک کابل با قطر ۳۲mm و پیکربندی ۶×۳۶ در زیر آورده شده است. سیگنال‌های LF نشانگر مفتول‌های شکسته و LMA بیانگر مفتول‌های از دست داده‌شده می‌باشند.

منبع: 

https://www.linkedin.com/pulse/integrity-assessment-guy-wire-rope-supported-flare-stack-dharman/

بیشتر بخوانید:

روش نشتی شار مغناطیسی – بخش دوم

acoustic emission workshop

کارگاه عملی آشنایی با روش آکوستیک امیشن

کارگاه عملی آشنایی با روش آکوستیک امیشن با همکاری شرکت مپوا دانشگاه علم و صنعت

کارگاه عملی آشنایی با روش آکوستیک امیشن بهمن امسال با همکاری شرکت مپوا در دانشگاه علم و صنعت برگزار شد. در این مطلب گزارش تصویری مربوط به این کارگاه را مشاهده می کنید. توضیح آنکه این کارگاه مربوط به زمان قبل از گسترش ویروس کرونا برگزار شده است.

شرکت مهندسان پایش وضعیت امیرکبیر (مپوا)، با بهره‌گیری از دانش فنی در حوزه تست‌های غیرمخرب موفق تولید و بومی سازی دستگاه آکوستیک امیشن Acoustic Emission شده است و اولین و تنها تولید کننده دستگاه آکوستیک امیشن ۴ کاناله در ایران است.

آزمون آکوستیک امیشن Acoustic Emission یا نشر صوتی یک روش نوین و پیشرفته در زمینه‌های آزمون غیر مخرب (Nondestructive testing) است. این روش در محدوده گسترده‌ای از کاربردهای قابل‌استفاده آزمون‌های غیر مخرب نظیر بازرسی مخازن تحت ‌فشار فلزی، سیستم‌های لوله‌کشی، راکتورها و غیره گسترش ‌یافته است. از این روش می‌توان برای تشخیص و موقعیت‌یابی عیوب مختلف در سازه‌های تحت بار و اجزای آن‌ها استفاده کرد. نوع کاربردها شامل ردیابی ترک، خوردگی، عیوب جوش و تردی ماده است.

آزمون آکوستیک امیشن یک تکنیک غیرفعال است که پالس‌های فراصوتی منتشرشده به‌وسیله منابع مختلف درون ماده را در لحظه وقوع آن تحلیل می‌کند. تفاوت اصلی آن با روش‌های التراسونیک یا پرتونگاری نیز همین است، درحالی‌که در این دو روش برای به دست آوردن اطلاعات راجع به قطعه موردنظر نیاز به اعمال انرژی خارجی است، در روش آکوستیک انرژی آزادشده از ماده موردنظر مرجعی برای کار بازرسی است. همچنین تست های آکوستیک امیشن علاوه بر توانایی اجرا بر روی تجهیزات جدید ، قابل پیاده سازی بر روی تجهیزات در حال سرویس هم هستند.

در زیر گزارش تصویری این رویداد رو مشاهده می کنید:

گزارش تصویری دوره “مبانی و کاربردهای آزمون غیرمخرب نشرآوایی”

گزارش تصویری دوره

“مبانی و کاربردهای آزمون غیرمخرب نشرآوایی”

دوره مبانی و کاربردهای آزمون غیرمخرب نشرآوایی توسط انجمن آزمون های غیر مخرب ایران با همکاری شرکت مهندسان پایش وضعیت امیرکبیر (مپوا)  برگزار شد. این دوره به مدت دو روز در روز سه شنبه و چهارشنبه مورخ ۲۹ ام و ۳۰ ام اسفند ماه ۱۳۹۸ به مدت ۱۶ ساعت و در برج فناوری دانشگاه امیرکبیر برگزار شد. 

مطالب ارائه شده

سرفصل مطالبی که در این دوره بیان شدند به شرح زیر است:
۱) مبانی تئوری آزمون نشر آوایی
۲) نصب، انتخاب و کالیبراسیون حسگرها
۳) پردازش سیگنال: کابل‌ها، پری آمپلی فایر، فیلترها، بهره، حد آستانه، تعیین مشخصه‌ها
۴) کاربردهای آزمایشگاهی: تشکیل ترک، تنش پسماند، خوردگی
۵) کاربردهای صنعتی: مخازن تحت فشار، اجزای دوار، پایپینگ، شیرها و پمپ‌ها، پل‌ها، مواد کامپوزیتی، صنایع هوایی، نشتی
۶) بررسی برخی از استانداردهای اجرایی در روش نشر آوایی
۷) نحوه ارائه گزارش آزمون

این دوره شامل آشنایی با روش نشرآوایی و نحوه کار با دستگاه و تنظیم و کالیبره کردن سنسورها قبل از تست، ارتباط دادن سیگنال های دریافتی با پدیده های ایجاد شده از منابع مختلف، چگونگی بهره گیری از روش آکوستیک امیشن برای افزایش ایمنی و عمر سازه‌ها، بکارگیری روش آکوستیک امیشن برای ارزیابی فرایند های گذرا در صنایع مختلف بود.

.

آزمون عملی

این دوره صرفا به بیان مطالب آکادمیک نپرداخت. در ساعات پایانی این دوره آزمون عملی شامل آزمون یاتاقان و آزمون مکان‌یابی در کارگاهی مناسب اجرا شد. تصاویر این آزمون عملی را نیز می توانید در زیر مشاهده نمایید:

گواهینامه پایان دوره

در پایان این دوره  گواهینامه پایان دوره به شرکت کنندگان اعطا گردید.

.

.

مبانی و کاربردهای آزمون غیر مخرب نشر آوایی

مبانی و کاربردهای آزمون غیرمخرب نشرآوایی

Acoustic Emission Nondestructive Testing

انجمن آزمون های غیر مخرب ایران با همکاری شرکت مهندسان پایش وضعیت امیرکبیر (مپوا)  دوره مبانی و کاربردهای آزمون غیر مخرب نشر آوایی را برگزار می کند. جزئیات بیشتر این رویداد را می توانید در ادامه این مطلب بخوانید:

سرفصل مطالب:
۱) مبانی تئوری آزمون غیر مخرب نشر آوایی

۲) نصب، انتخاب و کالیبراسیون حسگرها
۳) پردازش سیگنال: کابل‌ها، پری آمپلی فایر، فیلترها، بهره، حد آستانه، تعیین مشخصه‌ها
۴) کاربردهای آزمایشگاهی: تشکیل ترک، تنش پسماند، خوردگی
۵) کاربردهای صنعتی: مخازن تحت فشار، اجزای دوار، پایپینگ، شیرها و پمپ‌ها، پل‌ها، مواد کامپوزیتی، صنایع هوایی، نشتی
۶) بررسی برخی از استانداردهای اجرایی در روش نشر آوایی
۷) نحوه ارائه گزارش آزمون
همراه با آزمون عملی (آزمون یاتاقان، آزمون مکان‌یابی)

شرح دوره :
– آشنایی با روش نشرآوایی و نحوه کار با دستگاه و تنظیم و کالیبره کردن سنسورها قبل از تست.

– ارتباط دادن سیگنال های دریافتی با پدیده های ایجاد شده از منابع مختلف.
– چگونگی بهره گیری از روش آکوستیک امیشن برای افزایش ایمنی و عمر سازه‌ها.
– بکارگیری روش آکوستیک امیشن برای ارزیابی فرایند های گذرا در صنایع مختلف.

مخاطبان دوره:

  • مدیران و بازرسان فنی شرکت‌های بازرسی فنی
  • مدیران و بازرسان فنی صنایع نفت، گاز، و پتروشیمی، صنایع هوایی و صنایع دفاعی
  • مدیران و کارشناسان پایش وضعیت در صنایع نفت، گاز، و پتروشیمی، صنایع هوایی و صنایع دفاعی
  • دانشجویان و پژوهشگران رشته‌های مهندسی مکانیک، مهندسی مواد و متالورژی، مهندسی عمران و مهندسی هوافضا
    مدت دوره: بمدت ۱۶ ساعت
    پیش‌نیاز: ندارد
    گواهینامه و امتحان پایان دوره: با اعطای گواهینامه پایان دوره

برای دریافت اطلاعات بیشتر در خصوص دوره مبانی و کاربردهای آزمون غیر مخرب نشر آوایی میتوانید اینجا کلیک کنید.

آزمون غیر مخرب آکوستیک اِمیشن Acoustic Emission 

آزمون غیر مخرب آکوستیک اِمیشن Acoustic Emission 

آزمون آکوستیک امیشن Acoustic Emission یا نشر صوتی یک روش نوین و پیشرفته در زمینه‌های آزمون غیر مخرب (Nondestructive testing) است. این روش در محدوده گسترده‌ای از کاربردهای قابل‌استفاده آزمون‌های غیر مخرب نظیر بازرسی مخازن تحت ‌فشار فلزی، سیستم‌های لوله‌کشی، راکتورها و غیره گسترش ‌یافته است. از این روش می‌توان برای تشخیص و موقعیت‌یابی عیوب مختلف در سازه‌های تحت بار و اجزای آن‌ها استفاده کرد. نوع کاربردها شامل ردیابی ترک، خوردگی، عیوب جوش و تردی ماده است.

تفاوت اصلی با روش‌های التراسونیک یا پرتونگاری

تفاوت اصلی با روش‌های التراسونیک یا پرتونگاری

آزمون آکوستیک امیشن یک تکنیک غیرفعال است که پالس‌های فراصوتی منتشرشده به‌وسیله منابع مختلف درون ماده را در لحظه وقوع آن تحلیل می‌کند. تفاوت اصلی آن با روش‌های التراسونیک یا پرتونگاری نیز همین است، درحالی‌که در این دو روش برای به دست آوردن اطلاعات راجع به قطعه موردنظر نیاز به اعمال انرژی خارجی است، در روش آکوستیک انرژی آزادشده از ماده موردنظر مرجعی برای کار بازرسی است. همچنین تست های آکوستیک امیشن علاوه بر توانایی اجرا بر روی تجهیزات جدید ، قابل پیاده سازی بر روی تجهیزات در حال سرویس هم هستند.

تعریف آکوستیک امیشن

تخلیه سریع انرژی از یک منبع متمرکز در درون جسم باعث ایجاد امواج الاستیک گذرا به‌صورت صوت و انتشار آن‌ها در ماده می‌شود؛ این پدیده را اکوستیک امیشن می‌نامند، این امواج در ماده سیر می‌کنند و به سطح آن می‌رسند. آزمون غیر مخرب به روش آکوستیک امیشن شامل دریافت این امواج و تحلیل آن‌ها به‌منظور برقراری ارتباط بین امواج دریافت شده و تغییرات ایجادشده بر روی منبع است. با توجه به انتشار امواج از منبع تا سطح ماده، می‌توان آن‌ها را توسط سنسورهایی ثبت کرد و از این طریق اطلاعاتی در مورد وجود و محل منبع انتشار امواج به دست آورد. این امواج می‌توانند فرکانس‌هایی تا چند مگاهرتز داشته باشند.

برای شنیدن صدای مواد و شکست سازه‌ها از سنسورهای اولتراسونیک در محدوده ۲۰ کیلوهرتز تا ۱ مگاهرتز استفاده می‌شود. فرکانس‌های متداول در این روش در محدوده ۱۵۰ الی ۳۰۰ کیلوهرتز هستند. کاربرد این روش تنها به بازرسی غیر مخرب قطعات، تجهیزات و سیستم‌های مختلف محدود نمی‌شود؛ به‌علاوه می‌توان از آن برای تخمین عمر قطعات و تجهیزات بهره گرفت.  هم‌چنین از این روش می‌توان برای آشکارسازی و مکان‌یابی تخلیه‌های جزئی ولتاژ در مبدل‌های بزرگ، تحقیق و بررسی خصوصیات و مشخصات مواد، زمین‌شناسی و تحقیق میکرو ارتعاش‌ها استفاده کرد.

اصول بازرسی به‌وسیله آزمون آکوستیک امیشن

تعریف آکوستیک امیشن

نیروهای اعمال‌شده به قطعه باعث تحریک آن و ایجاد تنش‌های مختلفی می‌شود. این تنش‌ها باعث ایجاد منابعی می‌شود که امواج فراصوتی انتشار می‌کنند. به‌عنوان‌مثال می‌توان به شکل‌گیری ترک اشاره کرد.  امواج تولیدشده در تمام جهات بدون توقف منتشر می‌شوند.

انتشار امواج آکوستیک تا سطح قطعه یعنی جایی که سنسورها نصب شده‌اند ادامه می‌یابد و به‌وسیله سنسورها ثبت‌شده و به سیگنال‌های الکتریکی تبدیل می‌گردد. به وقوع پیوستن اتفاق امیشن و درنتیجه تولید سیگنال‌های آکوستیک امیشن را فعالیت آکوستیک امیشن می‌نامند. سیستم اکوستیک امیشن این سیگنال‌ها را پردازش می‌کند و آن‌ها را به بسته‌های اطلاعاتی تبدیل می‌کند. درنهایت اطلاعات آماری نظیر مشخصات و موقعیت منابع محاسبه‌شده و به‌صورت نمودارهای گرافیکی و عددی نمایش داده می‌شود تا مورد تفسیر قرار گیرند.

زنجیره فرآیند در آکوستیک امیشن

مکانیزم کلی کار با سیستم آکوستیک امیشن

شکل ۱ – مکانیزم کلی کار با سیستم آکوستیک امیشن.

 

می‌توان این عملیات را طی یک سلسله فعالیت که زنجیره فرآیند نام دارد، به‌صورت زیر، بیان نمود:

۱- قطعه آزمون: در اثر بارگذاری‌های موجود، تنش‌های مکانیکی در آن شکل‌ گرفته است.

۲- مکانیزم منبع: باعث آزادسازی انرژی الاستیک به‌صورت امواج می‌شود.

۳- انتشار موج: امواج از منبع تا سنسورهای نصب‌شده منتشر می‌شوند.

۴- سنسورها: موج مکانیکی را دریافت کرده و به سیگنال‌های الکتریکی آکوستیک امیشن تبدیل می‌کنند.

۵- کسب داده‌ها: سیگنال‌های الکتریکی به یک مجموعه داده الکترونیکی تبدیل می‌شوند.

۶- نمایش داده‌ها: اطلاعات به‌دست‌آمده ثبت می‌شود و بر روی دیاگرام نشان داده می‌شود.

۷- ارزیابی نمایشگر: دیاگرام‌های موجود موردبررسی و تفسیر قرار می‌گیرند.

ساختار بارگذاری و فعال شدن منابع آکوستیک

مکانیزم کلی کار با سیستم آکوستیک امیشن

شکل۲-نمودار تنش/کرنش فولاد به همراه مجموع رویدادهای آکوستیک ثبت‌شده.

در اثر اعمال نیرو تنش‌هایی در مناطقی از قطعه‌ ایجاد می‌شود و درنتیجه آن قطعه دچار کرنش می‌شود. کرنش در ابتدا به‌صورت برگشت‌پذیر است و اگر نیروی اعمال‌شده کافی باشد، در مناطقی که تمرکز تنش وجود دارد تغییر شکل دائمی ایجاد می‌شود و کرنش ایجادشده پس از حذف نیرو از بین نمی‌رود. تمرکز تنش در قسمت‌هایی مانند نواحی جوش‌ها، تغییرات سطح مقطع، ناپیوستگی‌های سازه و پیرامون ‌ترک‌ها زیاد است و ازآنجایی‌که کرنش هم به‌صورت برگشت‌پذیر و هم به‌صورت دائمی اکوستیک امیشن ایجاد می‌کند، این موارد را می‌توان شناسایی نمود.

ارتباط بین بارگذاری، مدت‌زمان و امواج آکوستیک ساطع‌شده

شکل 3  ارتباط بین بارگذاری ، مدت‌زمان و امواج آکوستیک ساطع‌شده

ارتباط بین میزان انتشار امواج نسبت به تنش اعمال‌شده در نمودار تنش کرنش و نمودار متناظر انتشار امواج که در شکل نشان داده‌ شده به‌خوبی مشخص است. این شکل مربوط به فولاد است. همان‌طور که در شکل ۲ مشاهده می‌شود در نواحی تسلیم و شکست قطعه بیشترین نرخ انتشار وجود دارد. با توجه به ‌این موضوع روش آکوستیک امیشن قادر به بررسی و تشخیص تسلیم یک جسم است. علاوه بر این گزارش‌هایی مبنی بر فعالیت آکوستیک امیشن با سطح انرژی بالا،  پیش از آنکه قطعه به حالت تسلیم برسد، وجود دارد و علت آن تسلیم در برخی از نواحی خاص قطعه است و نشان‌دهنده توانایی آزمون آکوستیک امیشن در تشخیص اولین تسلیم جسم است.

ارتباط بین نیروی اعمال‌شده در مقابل زمان و انتشار امواج آکوستیک امیشن متناظر با آن در شکل ۳ دیده می‌شود. بار وارده ابتدا زیاد می‌شود، سپس ثابت می‌ماند، دوباره افزایش‌یافته و دومرتبه ثابت نگه‌داشته می‌شود. در هر مرتبه افزایش بار، سیگنال‌های اکوستیک امیشن تولید می‌شوند. در مدتی که بار برای اولین بار ثابت نگه‌داشته شده است سیگنالی وجود ندارد ولی در طول مدت ثابت نگه‌داشتن دومین بار که مقدار تنش زیادتر است انتشار امواج ادامه می‌یابد و سپس به حالت تعادل درمی‌آید.

پارامترهای توصیف سیگنال

پارامترهای توصیف سیگنال

پنج مورد از مهم‌ترین پارامترهای استفاده‌شده برای توصیف سیگنال عبارت‌اند از:

۱-شمارش پالس‌ها.

 2-حداکثر دامنه.

 3-زمان استمرار.

 4- زمان رشد.

 5- نواحی اندازه‌گیری شده تحت پوشش سیگنال (انرژی سیگنال).

 به‌هرحال پنج پارامتر اصلی به‌طور مناسب استاندارد شده‌اند و از طریق فرآیندهای عرضه در ده سال اخیر پذیرفته شده‌اند. همراه با این پارامترهای سیگنال، توصیف ضربه عبور داده‌شده در کامپیوتر معمولاً شامل متغیرهای خارجی مهم از قبیل زمان آشکارسازی ، ارزش جریان بار اعمال‌شده  و سطح جریان نویز پیوسته پس‌زمینه است.

حداکثر دامنه

بیشترین پیک ولتاژی است که یک موج آکوستیک امیشن به آن می‌رسد این یک پارامتر خیلی مهم است زیرا مستقیماً قابلیت آشکارسازی اتفاقات اکوستیک امیشن را تعیین می‌کند این پارامتر مستقیماً با بزرگی اتفاقی که در منبع رخ‌داده متناسب است و معمولاً با واحد دسی‌بل بیان می‌شود.

انرژی

گاهی اوقات به‌عنوان شمارش‌های انرژی شناخته می‌شود E ناحیه‌ اندازه‌گیری تحت پوشش سیگنال اصلاح‌شده است. انرژی از جهات زیادی نسبت به شمارش پالس‌ها و حتی دامنه برتری دارد، چراکه هم  به دامنه و هم به زمان پالس بستگی دارد و درعین‌حال وابستگی کمتری به فرکانس کاری و آستانه تعیین‌شده دارد. فعالیت کلی آکوستیک امیشن اغلب باید توسط جمع‌کردن همه اتفاقات ردیابی شده بزرگ سنجیده شود و از میان همه ‌این پارامترها انرژی یک پارامتری است که بیشتر برای اهداف تقاضا شده است.

زمان استمرار

 فاصله زمانی بین اولین و آخرین عبور از آستانه تحریک است. این پارامتر با واحد میکروثانیه بیان می‌شود و به بزرگی اتفاق آکوستیک و خواص انعکاس ماده وابسته بوده و برای شناسایی فرایندهای طولانی نظیر لایه‌لایه شدن کامپوزیت‌ها و نیز فیلتر کردن نویزها بسیار مفید است.

زمان رشد

 به فاصله زمانی بین اولین عبور از آستانه تحریک و رأس دامنه گفته می‌شود و به خواص انتشار موج در ماده بستگی دارد. از این پارامتر برای انواع مختلف اصلاح سیگنال و در نویزها استفاده می‌شود.

شکل 4 یک نمونه سیگنال آکوستیک به همراه مشخص کردن پارامترهای اصلی آن.

شکل ۴ یک نمونه سیگنال آکوستیک به همراه مشخص کردن پارامترهای اصلی آن.

حسگرها و اندازه‌گیری

حسگرها و اندازه‌گیری

بعد از انتشار موج، گام بعدی ضروری شکل‌گیری سیگنال در سنسور است. معمولاً برای دریافت امواج آکوستیک، کریستال‌های پیزو الکتریک مورداستفاده قرار می‌گیرد و مواد پیزو الکتریک زمانی که دچار تغییر شکل می‌شوند از خود ولتاژ الکتریکی تولید می‌کنند. در سنسورهای آکوستیک تغییر شکل به‌وسیله حرکت ایجاد می‌شود. زمانی که کریستال‌های پیزو الکتریک که با امواج ناشی از تنش برخورد می‌کنند دچار واکنش الاستیک می‌شوند؛ نسبت دامنه ولتاژ خروجی به دامنه حرکت ورودی اندازه حساسیت سنسور است و این حساسیت به طرزی قوی وابسته به دامنه حرکت است، حساسیت المان بیشتر از رزونانس فرکانسی است.