نوشته‌ها

LF or LMA

تفاوت LMA و LF

تفاوت LMA و LF

در روش ارزیابی مغناطیسی کابل MRT دو اصطلاح یا به‌نوعی دو کلمه اختصاری معروف LMA و LF وجود دارد که هر دو بر اساس استانداردهای ISO4309 و EN12927 مطرح شده‌اند.

  • LF مخفف Localized Fault است. گاهی اوقات می‌توان آن را به‌عنوان LD، نقص موضعی (Localized Defect) نیز یافت.
  • LMA مخفف Loss of Metallic Area است.

 این دو سیگنال معمولاً نشان‌دهنده اصول کار روش MRT است.

 در این مقاله، نحوه تشخیص و نحوه ایجاد آن‌ها، معنای فیزیکی آن‌ها و شرایطی که در آن‌ها بهترین عملکرد را خواهید دید، مطرح شده است.

بیشتر بخوانید : مزایای روش ارزیابی مغناطیسی کابل (MRT)

عیوب موضعی LF (The Localized Fault signal)

فناوری LF قدیمی‌ترین فناوری روش MRT است. این سیگنال معروف، نشت شار مغناطیسی را در صورت وجود نقص در یک جسم مغناطیسی شده، مانند کابل سیم بکسل فولادی، اندازه‌گیری می‌کند.

defect on a rope fully saturated

همان‌طور که در تصویر بالا نشان داده شده است، هنگامی‌که عیبی روی کابل کاملاً اشباع شده وجود داشته باشد، قسمتی از میدان مغناطیسی از کابل خارج شده و از عیب عبور می‌کند.

این پدیده به دلیل وجود شکاف ایجاد شده توسط عیب در کابل رخ می‌دهد. در این حالت خطوط شار تغییر می‌کند چراکه با ناحیه (شکاف) با مقاومت مغناطیسیِ متفاوت برخورد می‌کند. این تغییر در اطراف کابل رخ می‌دهد. شدت و جهت نسبی به ماهیت و شکل عیب بستگی دارد. کاوشگرهای دستگاه، شار را تشخیص داده، آن را به ولتاژ تبدیل می‌کنند و درنهایت سیگنال را استخراج می‌کنند.

در تصاویر زیر می‌توانید دو نمونه از سیگنال‌های معمولی را که با فناوری LF به دست آمده مشاهده کنید.

cable nternal corrosion

localized fault signal

کابل های شکسته شده و دارای خوردگی را می‌توان با فناوری LF تشخیص داد. ذکر این نکته ضروری است که هر سیگنال باید توسط یک تکنسین آموزش‌دیده تفسیر شود. در نمودارها هیچ نشانه واقعی در مورد تعداد کابل‌های شکسته، موجودیت خوردگی یا از بین رفتن سطح فلزی و هیچ درصدی در محور وجود ندارد.

 این نتایج به بخش تفسیر منتقل می‌شوند. یک تکنسین آموزش‌دیده که نمودارها را می‌خواند می‌تواند به‌راحتی وضعیت واقعی کابل را ارزیابی کند. پایداری قوی، خطی بودن ساده و قابلیت اطمینان (بدون اثرات عجیب و نوسانات سیگنال) سیگنال LF را توصیف می‌کند. به همین دلیل، سیگنال LF تنها سیگنالی است که توسط روش صدور گواهینامه آزمون EN12927 مطرح شده است. بدون گذراندن این آزمون، امکان فعالیت در بخش تله کابین وجود ندارد.

 

عیوب ناشی از کاهش سطح مقطع LMA (Loss of Metallic Area)

عیوب ناشی از کاهش سطح مقطع (Loss of Metallic Area-LMA) به‌منظور ارائه‌ی اطلاعات کمی از میزان خسارت وارده به کابل است، به کمک این روش می‌توان نقص‌های موجود (معمولاً خوردگی) کابل های فلزی را تشخیص داد.

نمودار مربوط به این سیگنال عمدتاً به شکل درصد نشان داده می‌شود. تکنسین مربوطه مقدار (-۲، ، -۵، و غیره) روی نمودار را که مربوط به از دست دادن بخش فلزی در یک نقطه مشخص است می‌خواند.

Loss of metallic areaLoss of Metallic Volume

رابطه بین حجم و طول طناب

نام واقعی LMA را می‌توان LMV (از دست دادن حجم فلزی Loss of Metallic Volume) نیز دانست. هنگامی‌که عیبی در یک کابل وجود دارد، در مقاومت مغناطیسی تفاوت زیادی به وجود می‌آید. کابل را می‌توان به‌عنوان یک مقاومت الکتریکی در نظر گرفت که ارزش در نظر گرفته آن بستگی به ویژگی‌های فیزیکی کابل دارد.

ناحیه دارای عیب منطقه‌ای است که در آن آهن با هوایی که مقدار کل مقاومت را تغییر می‌دهد جایگزین شده است. در بحث تقارن مغناطیسی magnetic parallelism  به این پدیده مقاومت (reluctance) گفته می‌شود. هرچه کابل های موردبررسی شکستگی و یا خوردگی بیشتری داشته باشند، مقاومت بیشتر می‌شود، زیرا مانع به جریان درآمدن شار مغناطیسی می‌شود.

دایره آبی در تصویر ۳ نشان‌دهنده نقطه اندازه‌گیری در دستگاه برای تشخیص تغییرات شار است. ممکن است بیان شود که تحت فرضیه خاصی، شار اندازه‌گیری شده متناسب با حجم عیب در کابل است.

 

بین حجم و طول کابل چه نسبتی وجود دارد؟

  • اگر طول عیب بیشتر از طول دستگاه باشد، کاهش حجم متناسب با کاهش مقطع است. فقط تحت این فرضیه LMV با LMA منطبق است.
  • اگر عیب کوتاه‌تر از طول دستگاه باشد همان‌طور که در تصویر زیر نشان داده شده است سیگنال از نظر دامنه سطحش پایین تر یا کمتر است،

LMA signal vs defect length

LF and LMA diagram for a real rope

به همین دلیل است که سیگنال LMA معمولاً برای شناسایی عیوب طولانی» مانند خوردگی، فرسودگی و غیره استفاده می‌شود. به‌طورمعمول برای تشخیص کابل‌های شکسته مناسب نیست.

 

یک سیگنال LMA معمولی در تصویر ۵ نشان داده شده است، کابل تا ۱۹۴ متر در وضعیت خوبی قرار دارد، سپس برای ۳۰ متر حدود ۱۰-۱۵٪ نقص وجود دارد.

LF and LMA diagram for joint point cableway ropemrt-lma-diagram

پدیده اثرات نهایی

اندازه‌گیری LMA مستقیماً به شار اصلی که از داخل کابل عبور می‌کند و مدار مغناطیسی متصل می‌شود. هرگونه تغییر در مسیر شار را می‌توان توسط پروب ها به‌عنوان تغییری در یک بخشی از کابل در نظر گرفت.

این امر مسلماً زمانی که شار به دلیل نقص واقعی روی کابل تغییر می‌کند نیز صادق است، اما گاهی اوقات مسیر میدان مغناطیسی می‌تواند توسط برخی پدیده‌های خارجی مخدوش شود. یک مثال واضح و مکرر “پدیده اثرات نهایی”  (end effects phenomenon) است که چند متر قبل از پایان کابل ظاهر می‌شود.

تصور کنید که آزمایشی را در یک تله کابین انجام دهید، جایی که کابل یک حلقه بسته است. در این حالت، مقدار کابلی که در جلوی دستگاه وجود دارد، در پشت آن نیز یکسان است؛ به عبارت دیگر، پیکربندی مغناطیسی خارجی و خطوط شار یکسان است.

اگر آزمایش را بر روی کابل جرثقیل انجام دهیم، در یک نقطه خاص خاتمه کابل به دستگاه نزدیک می‌شود و مقدار کابل فلزی در پشت و جلوی سیستم متفاوت خواهد بود. این امر باعث ایجاد اعوجاج در خطوط شار می‌شود و درنتیجه سیگنال را تغییر می‌دهد.

تصویر بعدی نمونه‌ای از این پدیده را نشان می‌دهد. در اینجا دستگاه به‌صورت دستی روی کابل حرکت می‌کند، این حرکت از ابتدا (۱ متر کابل در پشت و ۱۰ متر در جلو) شروع شده و تا انتها (وضعیت مخالف) ادامه می‌یابد.

همان‌طور که مشاهده می‌کنید، سطح متوسط نمودار از یک مقدار به مقداری دیگر منتقل می‌شود و این تعبیر غلطی از تغییر است. به‌طور خلاصه، در این آزمایش‌ها آزمایشگاهی که در آن نقص‌ها به‌طور مصنوعی نزدیک به انتهای کابل ایجادشده‌اند، خواندن تغییرات واقعی در سطح مقطع تقریباً غیرممکن است. چرا باید بازرسی میدانی آسان‌تر شود؟

mrt end effects phenomenon

 

حساسیت سیگنال به محیط خارجی

سیگنال LMA نسبت به LF به محیط خارجی بسیار حساس‌تر است. اگر در حین آزمایش برخی از قطعات فلزی به سیستم نزدیک شوند، خطوط شار مغناطیسی تغییر می‌کند و احتمالاً بر روی نتیجه بازرسی تأثیر می‌گذارد. این مهم یکی از دلایلی است که باعث می‌شود دستگاه در یک محیط آزاد قرار گیرد.

درنهایت، باید به خاطر داشته باشیم که نمودار LMA معمولاً بسیار فیلتر شده است که به‌شدت با روش‌های نرم‌افزاری، ظاهر خود نمودار را تغییر می‌دهد. مزیت اصلی این روش این است که ردیابی بهتر تفسیر بهتری ارائه می‌دهد، اما کاربر نهایی باید کنترل تمامی مراحل را حفظ کند. وقتی الگوریتم‌های بسته اعمال می‌شوند و مشتری هیچ کنترلی بر آن‌ها ندارد، ممکن است موقعیت خطرناکی به وجود آید. این وضعیت یک وضعیت کلاسیک است که در آن کاربر به‌خوبی کار می‌کند اما نقطه شروع و درنتیجه بازرسی کاملاً اشتباه است.

 

در نهایت LMA  یا LF ؟

LF ازنظر فنی به‌عنوان پایدارترین سیگنال شناخته می‌شود و تنها نقصی است که کاملاً تنظیم شده است (EN12927). در این سیگنال، عیب و دامنه مستقیماً با هم ارتباط ندارند و بسته به شکل آسیب، می‌توانند از عیبی به عیب دیگر متفاوت باشند. به همین دلیل، تجزیه و تحلیل نیاز به تفسیر کاربر دارد. تحت آموزش مناسب، تکنسین ها قادر خواهند بود نمودارهایی را که به مشتریان خود گواهی وضعیت کابل می‌دهند، به‌درستی بخوانند.
 

بیشتر بخوانید : بازرسی کابل فولادی؛ آنچه نمی‌توانید مشاهده کنید

 LMA یک سیگنال آسان است و این دقیقا ضعف اصلی آن است. متأسفانه خواندن “-۵ “برای تعریف وضعیت واقعی کابل کافی نیست. این امر به نوبه خود‌ خطر بزرگی محسوب می شود؛ زیرا افراد غیرحرفه ای و بدون آگاهی عمیق از این پدیده نیز می‌توانند آن را بخوانند.

از نظر ما، اگر افراد آموزش خوبی در مورد LMA  دیده باشند، این سیگنال می‌تواند یک “سیگنال پشتیبان” خوب برای LF باشد. اگر افراد به‌درستی آموزش ندیده باشند، باید از در نظر گرفتن سیگنال LMA اجتناب کنند.

همچنین در نظر داشته باشید که برخی از دستگاه‌ها وجود دارند که در آن‌ها “سیگنال دوگانه یا ‘dual signal’   (LF+LMA) با استفاده از دو پروب مختلف بدست نمی‌آید ، بلکه با محاسبه ریاضی پیچیده بدست می آید ؛ به عبارت دیگر، گاهی اوقات نمودار LF که روی صفحه می‌بینید فقط مشتق عددی سیگنال LMA است. این ازنظر فیزیکی اشتباه است و هرگونه سیگنال کاذبی که می‌توانید در LMA داشته باشید، در LF نیز منتقل می‌شود؛ به عبارت دیگر، اگر یک سیستم مجهز به LMA باشد، فرد باید بررسی کند که آیا LF نیز موجود است و آیا LF توسط یک مدار پروب جداگانه به دست آمده است یا خیر.

 

منبع : https://www.mennens.nl

بیشتر بخوانید : بهره وری روش MFL در خدمات بازرسی لوله

بیشتر بخوانید : خدمات بازرسی لوله به روش های غیرمخرب

 

بهره وری روش MFL در خدمات بازرسی لوله

بهره وری روش MFL در خدمات بازرسی لوله

 

افزایش میزان عیوب و خرابی در لوله های دیگ های بخار سبب افزایش تعمیرات و در نتیجه افزایش هزینه های نگهداری این تجهیزات گشته است.

خرابی لوله های دیگ های بخار می تواند به دلایل زیر باشد:

  • فشار
  • خوردگی
  • ترک خوردگی
  • خرابی فلز
  • فشار ناشی از خوردگی

تعمیرات لوله های دیگ بخار هزینه بر هستند؛ بنابراین یافتن دلیل خرابی این لوله ها حیاتی است. تجزیه و تحلیل خرابی لوله های دیگ بخار معمولا مربوط به خوردگی، ترک خوردگی، خرابی فلز، فشار ناشی از خوردگی یا مواردی از این دست است.

ترک خوردگی و فشارهای وارد بر لوله که منجر به شکست لوله دیگ بخار می گردند ممکن است به دلایل گسترده ای اتفاق بیفتد. در بسیاری از مواقع این موارد از دید مستقیم  پنهان می مانند.

تجزیه و تحلیل خرابی و آزمایش لوله برای مبدل های حرارتی مانند کندانسورها (condensers) یا محفظه توربین بخار یا مبدل های حرارتی مناسب است.

 مبدل های حرارتی در هر اندازه به طور کلی دارای لوله های بسیار گران قیمت هستند ، بنابراین جایگزینی لوله ها به عهده تصمیم گیرندگان ارشد است. زمان این جایگزینی در مکانیسم های تاسیسات همیشه به وضوح مشخص نیست ، بنابراین تجزیه و تحلیل خرابی لوله دیگ بخار و آزمایش پیوسته شرایط آن ها لازم است.

بیشتر بخوانید: بازرسی غیرمخرب کابل ها و لوله ها به روش نشتی شار مغناطیسی MFL

مناسب ترین روش برای بازرسی لوله

هیچ روش بازرسی واحدی برای انواع مختلف مواد توصیه نمی شود. یک سیستم تک فناوری فقط برای طیف محدودی از کاربردها می تواند استفاده شود. از روش ادی کارنت eddy current (EC) معمولاً برای بازرسی مواد غیرفرومغناطیسی استفاده می شود. در خصوص بهره وری روش MFL در خدمات بازرسی لوله نیز تصویر زیر مقایسه ای از انواع روش ها را در برمی گیرد.

بیشتر بخوانید: خدمات بازرسی لوله به روش های غیرمخرب

 

برای بازرسی از مواد فریت (هیدراکسید اهن) و لوله های فولادی کربن از روش های (RFT) Remotefield testing و نشتی شار مغناطیسی (MFL) استفاده می شود.

تکنیک سیستم بازرسی داخلی دوار فراصوتی The internal rotary inspection system (IRIS) برای پروفیلومتری (profilometry) لوله و نقشه برداری از خوردگی استفاده می شود و یک روش بازرسی معتبر برای ادی کارنت (eddy current) ، آر اف تی RFT (remote field) و نشتی شار مغناطیسی هر ماده است.

Tube-Inspections-suitability

 

بیشتر بخوانید : دستگاه نشت شار مغناطیسی (Magnetic Flux Leakage (MFL

بیشتر بخوانید : بازرسی غیرمخرب کابل ها و لوله ها به روش نشتی شار مغناطیسی MFL

منبع : Tube Inspections Testing Services Singapore, India, Asia

 

مطالعه موردی از بازرسی پیوسته به روش نشتی شار مغناطیسی

مطالعه موردی از بازرسی پیوسته به روش نشتی شار مغناطیسی

(شرکت اینترون پلاس INTRON PLUS)

 

دستگاه نشت شار مغناطیسی شرکت اینترو پلاس INTRON PLUS

intron

نتایج حاصل از بررسی دستگاه ساخته‌شده توسط شرکت اینترون پلاس INTRON PLUS به روش ارزیابی مغناطیسی کابل MRT (در سال ۲۰۱۰-۲۰۱۱) نشان داده است که ۲۵٪ از تمام کابل‌های بازرسی شده باید قبل از رسیدن به مقدار ton-mile (تن-مایلِ) تعیین شده توسط مقررات بازرسی خدمات کابل تعویض شوند. (توضیح آنکه یک  ton-mile معادل حمل یک تن محصول به میزان یک مایل است). این موضوع نشان دهنده اهمیت بازرسی کابل به روش MRT در سکوهای حفاری است. در این مطلب مطالعه موردی از بازرسی پیوسته به روش نشتی شار مغناطیسی شرکت اینترون پلاس مورد بررسی قرار گرفته است.

از سال ۲۰۱۴ سیستم پایش وضعیت پیوسته و خودکار کابل Intros-Auto برای بازرسی چندین دکل حفاری ۴ شرکت مختلف در روسیه نصب شد. این سیستم، کابل های فولادی از سازه های ۶ رشته ای و ۸ رشته ای با قطر ۲۸ میلی متر تا ۳۵ میلی متر را بررسی می‌کند.

بیشتر بخوانید : پیاده‌سازی سیستم پایش وضعیت پیوسته کابل

پایش وضعیت به طور پیوسته و به صورت دوره‌ای انجام می‌شود. کابل باید قبل از هر شیفت، یعنی دو بار در روز بررسی شود.

در حین بازرسی، قلاب از پایین ترین موقعیت به بالاترین موقعیت می‌رود تا حداکثر عبور طول کابل از هد مغناطیسی فشرده compact magnetic head (MH) را فراهم کند.

ذکر این نکته ضروری است که هنگام بازرسی، کابل باید بار یکسانی داشته باشد، زیرا بسته به این بار، نتایج حاصل شده می‌تواند متفاوت باشد.

بیشتر بخوانید: بازرسی کابل فولادی؛ آنچه نمی‌توانید مشاهده کنید

نتایج بازرسی به روش نشتی شار مغناطیسی

شکل ۴ نتایج بررسی LMA و LF کابل را پس از ۳۰ روز را نشان می دهد که به ۴۵۴۵ تن کیلومتر رسیده است که تقریباً ۵۰٪ (۳۰۰۰ تن کیلومتر) از معیارهای برش و لغزش فراتر رفته است: کابل عیب قابل توجهی ندارد. فقط چندین شکستگی در نتایج LF-trace کابل دیده می‌شود.

LMA and LF traces for the rope running 4545 t-km.

شکل ۴ – آثار LMA و LF برای طناب با طول ۴۵۴۵ تن کیلومتر

شکل ۵ آثار LMA و LF را هنگام ظاهر شدن نشانگر زرد در صفحه نمایشگر نشان می دهد. این اتقاق پس از ۳۶ روز عملیات رخ داده و شرایط به موقعیت ۵۴۰۰ تن کیلومتر دست یافته بود.

LMA and LF traces for the rope running 5400 t-km

شکل ۵ – آثار LMA و LF برای طناب با طول ۵۴۰۰ تن-کیلومتر

مناطقی با محل تجمع کابل های شکسته هم وجود دارد: در فاصله ۹۰ – ۱۵۰ متر و در فاصله ۲۰۰ – ۱۵۰ متر.

حداکثر شکستگی کابل در طول ۳۰ روز در منطقه دوم بیشتر از منطقه اول است و از آستانه هشدار که با نور زرد مشخص شده است فراتر رفته است.

شکستگی‌های کابل در گروه های دوره‌ای واقع‌شده است که ویژگی خرابی کابل را در قرقره‌های این بالابر منعکس می‌کند.

شکل ۶ آثار LMA و LF را هنگامی نشان می دهد که چراغ نمایشگر قرمز رنگ است. این مورد بعد از ۳۸ روز است یعنی زمانی که کابل شرایط ۵۹۰۰ تن کیلومتر داشت.

LMA and LF traces for the rope running 5900 t-km

شکل ۶ – آثار LMA و LF برای طناب با طول ۵۹۰۰ تن-کیلومتر

حداکثر شکستگی‌های کابل در بیش از ۳۰ روز در فاصله ۲۰۰ – ۱۵۰ متر از آستانه تعویض کابل فراتر می‌رود. لازم به ذکر است که این اتفاق تنها ۲ روز پس از نمایشِ نشانگر زرد رخ داده است. پس از شروع، تخریب کابل با سرعت بسیاری پیش می‌رود.

معیارهای تعویض کابل برای نشانگر قرمز مربوط به شکستگی ۱۰٪ کابل در یک طول لبه (مربوط به ۶ روز) است. در این مورد مطالعاتی، این حالت به معنی شکستن ۲۱ کابل است.

به منظور شمارش تعداد واقعی کابل های خراب، بیشتر قسمت‌های خراب‌شده کابل بریده‌شده و از هم جدا شد.

بیشتر بخوانید:

مراحل بازرسی به روش آزمون نشتی شار مغناطیسی (MFL)

اطلس عیوب ایجادشده بر روی کابل‌ها سیم بکسل

شکل ۷ رشته ها جداگانه یک کابل را بعد از جدا کردن رشته ها نشان می دهد. حداکثر شکستگی کابل ها در طول باند ۲۷ است.

 Broken wires of one strand after its unstranding

شکل ۷ رشته ها جداگانه یک کابل را بعد از جدا کردن رشته ها

بنابراین نشانگر سیستم سالم است. لازم به ذکر است که شمارش دقیق کابل های خراب در محل تجمیع خرابی‌های کابل، کار نسبتا پیچیده‌ای است، بنابراین در این حالت فقط تخمین آماری می‌توان انجام داد.

جدا کردن اغلب رشته های خراب کابل پس از چرخه بعدی عملیات نیز تکرار شد و برآورد صحیح کابل بررسی‌شده توسط Intros-Auto  را تأیید کرد.

 

نتیجه‌گیری

مفهوم بازرسی پیوسته به روش نشتی شار مغناطیسی در سیستم نظارت بر کابل شرکت اینترو پلاس INTRON PLUS ایجاد و اجرا شد.

این سیستم تشخیص به موقع خرابی و عیوب کابل را فراهم می‌سازد و در نتیجه عملکرد مناسب کابل می‌تواند منجر به کاهش هزینه شود.

عملکرد مناسب سیستم نظارت پیوسته کابل در شرایط صنعتی، قابلیت اطمینان، سادگی در عملکرد و اعتبار نتایج بازرسی را نشان داده می دهد. این مفهوم به برنامه‌های مهم دیگری در خصوص بازرسی کابل نیز گسترش خواهد یافت.

 

بیشتر بخوانید:

سایر کاربردهای نشتی شار مغناطیسی

آزمایش نشتی شار مغناطیسی با تجهیزات ایجاد میدان مغناطیسی قوی و ضعیف

پیاده سازی سیستم های پیوسته نظارت بر کابل

پیاده‌سازی سیستم پایش وضعیت پیوسته کابل

پیاده‌سازی سیستم پایش وضعیت پیوسته کابل


الزامات سیستم‌های نظارت پیوسته بر کابل

سیستم‌های قدیمی پایش وضعیت کابل از بسیاری جهات با ابزارهای امروزی و رایج شده روش ارزیابی مغناطیسی کابل MRT متفاوت هستند. برای اطمینان از قابلیت اطمینان و مقاومت بالا، چنین سیستم‌هایی باید دارای طراحی مستحکم بوده و کار با آن‌ها بسیار آسان باشد.

بیشتر بخوانید :  مقایسه روش های سنتی بازرسی کابل با روش ارزیابی مغناطیسی کابل


سنسورها باید حساسیت بالایی در برابر تشخیص خرابی کابل داشته باشند و همچنین عوامل جانبی تأثیرگذار (ولی کم‌اهمیت) بر سطح دقت آن‌ها تأثیری نداشته باشند. این تجهیزات تقریباً باید به‌طور خودکار داده‌ها را تفسیر کنند و نتایج حاصل از تفسیر داده‌ها باید بدون ابهام و قابل درک باشد. در عین حال دقت و تکرارپذیری داده‌ها باید چنان باشد که اجازه تأیید این نتایج را بدهد. این به معنای ذخیره نتایج در مدت زمان قابل‌توجه و امکان بازیابی این نتایج برای بررسی بعدی است.
معیارهای تعویض کابل که به‌طور خودکار محاسبه شده باید با استانداردهای بین‌المللی مانند ISO 4309 مطابقت داشته باشد، بنابراین باید حداقل کاهش سطح مقطع فلزی و تعداد شکستگی کابل در یک طول ثابت را اندازه‌گیری کند.

 

پیاده‌سازی سیستم پایش وضعیت پیوسته کابل

مجموعه تجهیزات پیچیده جهت پیاده‌سازی سیستم های پایش وضعیت پیوسته کابل بیشتر برای سیستم‌های با طراحی تخصصی که به‌منظور کاربردهای خاصی از کابل‌ها به کار گرفته می‌شوند قابل بهره برداری است. به‌عنوان مثال سیستم پایش وضعیت کابل برای بلند کردن بلوک‌های سکوهای حفاری ، برای جرثقیل‌های جابجایی مواد مذاب کارخانه‌های فولادی.
سیستم خودکار برای نظارت بر کابل‌های حفاری متشکل از اجزای زیر است:
• هد مغناطیسی فشرده compact magnetic head (MH) ، قرار داده شده بر روی کابل که به یک واحد کنترل است
• نمایشگر (CDU) که در کنسول اپراتور قرار داده شده است.

 

ویژگی سیستم پایش وضعیت پیوسته کابل

سیستم مانیتورینگ دارای طراحی ضد انفجار، دامنه دمایی گسترده و محافظت در برابر نفوذ آب با استاندارد IP 66 است، بنابراین می‌توان از آن در محیط‌های با شرایط سخت هم استفاده کرد.
این سیستم دو حالت عملکرد را فراهم می‌کند:

  1. نظارت پیوسته
  2. آزمایش دوره‌ای و خودکار کابل
    هد مغناطیسی نشان داده شده در شکل ۱ برای آزمایش دوره‌ای کابل (هر shaft) طراحی شده است.
    هد مغناطیسی دستگاه MFL
    هد مغناطیسی فشرده (MH) به‌طور دائم در نزدیکی درام (drum) در یک واحد گردان واقع شده است، این ویژگی امکان نصب و برچیدن سریع و آسان از کابل را فراهم می‌کند، در این حالت هیچ‌گونه اتصال اضافی لازم نیست.
    روش بازرسی کاملاً خودکار است، بنابراین اپراتور تنها باید سیستم را روشن و خاموش کرده و نتایج را در صفحه نمایش ببیند. برای فهم بهتر و آسان‌تر، نتایج به‌گونه‌ای است که نشانه‌ها با اصل چراغ راهنمایی مطابقت دارند.

بیشتر بخوانید  : بازرسی کابل فولادی؛ آنچه نمی‌توانید مشاهده کنید ؛ ایمنی از داخل به خارج

فرآیند بازرسی مغناطیسی توسط سیستم پایش وضعیت پیوسته کابل

اگر کابل معیوبی (مثلاً پوسیده یا شکسته) از هد مغناطیسی عبور کند، بسته به شرایط کابل، چراغ نمایشگر CDU رنگ زرد یا قرمز را روشن می‌کند (نور زرد مربوط به شرایط هشدار و نور قرمز مربوط به شرایط بحرانی است). اگر هیچ‌گونه عیبی در کابل مشاهده نشود، چراغ نمایشگر سبز رنگ می‌شود.
در صورت بررسی کامل طول قابل دسترس کابل، می‌توان بازرسی‌های پی‌درپی را با یکدیگر مقایسه کرد تا زمانی که کابل شروع به خرابی می‌کند را تشخیص داد.
در پایان بازرسی، برخی اطلاعات اضافی در مورد عیوب آشکار شده در نمایشگر CDU نمایش داده می‌شود تا اپراتور بتواند در صورت لزوم عیب را از نظر چشمی نیز بررسی کند.

 

پایداری و کارایی سیستم پایش وضعیت پیوسته کابل

این سیستم می‌تواند داده‌های مربوط به بازرسی‌های چند سال را ذخیره کند ، این نتایج را می‌توان از طریق Wi-Fi یا کابل به سیستم‌های کامپیوتری ارسال کرد. همچنین امکان کنترل روند بازرسی از طریق این سیستم‌ها از راه دور نیز وجود دارد. مجموعه این سیستم حالت‌های نظارت مستمر و دوره‌ای را پیاده‌سازی می‌کند.
با توجه به تقاضا ، نتایج بازرسی توسط متخصصان قابل‌تجزیه و تحلیل است. تاکنون اغلب اندازه‌گیری ها، نمایشی مشابه ردیابی LMA و LF دارند. سرعت کابل در هنگام بازرسی می‌تواند از ۰٫۲ تا ۵ متر بر ثانیه باشد.

بیشتر بخوانید: مزایای روش ارزیابی مغناطیسی کابل (MRT)

 

تخمین وضعیت کابل

وضعیت کابل بر اساس معیارهای مختلف تخمین زده می‌شود – این موارد عبارت‌اند از :
LMA و تعداد شکستگی کابل در دو طول ثابت کابل که می‌تواند برای مطابقت با استانداردهای ایزو ISO 4309 ترکیب شود.
وظیفه اصلی پردازش داده‌ها تشخیص شکستگی کابل است. برای افزایش قابلیت اطمینان، از دو سنسور LF مختلف استفاده می‌شود: یک سنسور نسبت به شکستگی کابل خارجی حساسیت بهتری دارد و سنسور دیگر حساسیت بهتر به شکستگی داخلی کابل دارد.
الگوریتم‌های ویژه، کانال‌های LF مناسب را با هم تطبیق می‌دهد تا از به شمار آوردن تکراری شکست‌های رخ‌داده در کابل جلوگیری کند. شکل ۳ ردپای دو سنسور LF مختلف را نشان می‌دهد ، شکست‌ها محلی شناسایی شده در بالای رد مشخص شده اند.

برای تشخیص سیگنال‌های شکست کابل در محیط‌های پر از اغتشاش از فیلترهای تطبیقی استفاده می‌شود. همچنین باید در نظر گرفته شود که یک سیگنال می‌تواند با چندین کابل خراب مطابقت داشته باشد، بنابراین اندازه آن باید در برخی از فرم‌های آماری برای تخمین تعداد کابل خراب در نظر گرفته شود.

 

 

مراحل بازرسی به روش آزمون نشتی شار مغناطیسی (MFL)

مراحل بازرسی به روش آزمون نشتی شار مغناطیسی (MFL)

 

فرآیند بازرسی به روش آزمون نشتی شار مغناطیسی

در تصویر زیر سه مرحله فرآیند بازرسی به روش آزمون نشتی شار مغناطیسی (MFL) را مشاهده می‌کنید:

۱. تنظیم یا کالیبره کردن (Calibrate)

در اولین مرحله از مراحل بازرسی به روش آزمون نشتی شار مغناطیسی،  مشخصات طناب یا مفتول همچون اطلاعات مربوط به ساخت سیم و طول طناب وارد می‌شود تا ارزش معیار و محک مشخص گردد.

۲. بازرسی (Inspect)

در مرحله دوم دستگاه بازرسی برای اندازه‌گیری طناب یا مفتول مشخص‌شده تنظیم می‌شود.

۳. بازبینی سیستم (System Review)

گزارش بازرسی طناب یا مفتول بررسی می‌شود.

 

عیوب ایجادشده بر روی کابل‌ها

عیوب ایجادشده بر روی کابل‌ها به‌صورت عیوب داخلی و خارجی هستند که شامل شکستگی مفتول‌ها، ساییدگی، خوردگی، تغییر شکل، عیوب خستگی و … می‌باشند.

در تصویر بالا انواع مختلف عیوب ایجادشده بر روی کابل‌ها آورده شده است. یکی از راه‌کارهای مناسب برای بررسی این عیوب استفاده از روش‌های چشمی و آزمون‌های غیر مخرب است. روش آزمون نشتی شار مغناطیسی (MFL) یکی از این روش‌ها است که به شناسایی نوع و محل عیب می‌پردازد.

   

 

 

تفاوت روش آزمون نشتی شار مغناطیسی (MFL) با بازرسی چشمی

همان‌طور که در تصاویر بالا مشخص است روش بازرسی چشمی در مقایسه با روش آزمون نشتی شار مغناطیسی (MFL) تنها ۲۰ درصد از عیوب را نشان می‌دهد.

 

شرکت مهندسان پایش وضعیت امیرکبیر (مپوا) ازجمله تولیدکنندگان دستگاه‌های حوزه آزمون‌های غیر مخرب است که در زمینه عیب‌یابی و بازرسی کابل‌ها این دستگاه‌ها را عرضه و خدمات مربوط به این حوزه را انجام می‌دهد. برای کسب مشاوره در مورد کابل‌های تله‌کابین، آسانسور، کابل‌های جرثقیل و بالابرها و کابل‌های استفاده‌شده در معادن و …. با ما در ارتباط باشید.


تلفن و تلفکس:

۰۲۱۶۶۹۵۶۶۲۱

۰۲۱۶۶۴۶۹۱۴۸

۰۲۱۶۶۹۵۶۹۱۱

www.mapvaco.com

info@mapvaco.com

 

لینک های مرتبط : 

دستگاه نشت شار مغناطیسی (Magnetic Flux Leakage (MFL

اطلس عیوب ایجادشده بر روی کابل‌ها سیم بکسل

 

منبع : https://ropescan.us/inspection-process

 

مقایسه دو تکنولوژی غیرمخرب MFL و SLOFEC

اصول تست SLOFEC

تکنیک SLOFEC (Saturated Low Frequency Eddy Current) بر پایه اصول اولیه ادی کارنت یا جریان گردابی به همراه میدان مغناطیسی است. با به‌کارگیری مغناطیس کردن با جریان مستقیم، عمق نفوذ خطوط میدان جریان گردابی در مواد فرو مغناطیس افزایش می‌یابد.

در مورد یک عیب، خطوط میدان مغناطیسی دارای دانسیته بالایی هستند که گذردهی نسبی مغناطیسی را تغییر می‌دهد و این تغییرات باعث تغییر در خطوط میدان جریان گردابی می‌گردد.

 


تغییرات خطوط میدان جریان گردابی اندازه‌گیری و اختلاف آن باحالت بدون عیب ازنظر دامنه و فاز مورد مقایسه قرار می‌گیرد.

محاسن SLOFEC 

توانایی آنالیز منحصربه‌فرد فاز سیگنال، دامنه سیگنال و شکل سیگنال ازجمله محاسن ویژه این روش برای ارزیابی موارد زیر را فراهم می‌کند:

  • مقدار عیب در دیواره
  • تشخیص عیوب در بالا یا پایین دیواره
  • آنالیز حجم عیب
  • تشخیص عیب و تورق و … نسبت به همدیگر
  • سازگاری فرکانس برای فاصله‌های هوایی بالاتر
  • قابلیت جداسازی سیگنال نویز از سیگنال عیب

بازرسی به این روش امکان شناسایی عیوب موضعی را با استفاده از سنسورهای دیفرانسیلی جریان گردابی ایجاد می‌کند. در دیاگرام شماره ۲ پاسخ سیگنالی برای عیب کم و عیوب بزرگ‌تر آورده شده است.

 


نتایج حاصل از اسکن برای عیوب داخلی دارای سیگنال با جهت‌گیری عمودی می‌باشند ولی برای عیوب خارجی دارای جهت‌گیری افقی می‌باشند. دیاگرام شماره ۳ نحوه جداسازی سیگنال مربوط به عیب خارجی و داخلی را نشان می‌دهد.


در نرم‌افزار استفاده‌شده برای این روش قابلیت آنالیز سیگنال‌ها ازنظر دامنه و فاز در جهت شناسایی مقدار عیب نیز آورده شده است که درصد عیب را به‌صورت رنگی می‌توان در آن مشاهده کرد.


به دلیل سازگاری فرکانس‌های جریان گردابی و تغییرات خطوط میدان مغناطیسی در داخل ماده، این فنّاوری برای بازرسی مواد از ضخامت دیواره‌های پایین تا بالا را بخصوص در حالتی که پوسس داشته باشد را دارد.

به‌صورت تجربی با این روش قابلیت تست ضخامت ماده تا ۳۳ میلی‌متر و با پوشش تا ۱۰ میلی‌متر فراهم شده است.

این روش نسبت به روش آلتراسونیک که اندازه واقعی کاهش ضخامت دیواره را مشخص می‌کند نبوده بلکه به‌صورت نسبی تغییرات را نسبت به نمونه مرجع سنجیده و گزارش می‌دهد. لذا نمونه مرجع استفاده شده تا حد امکان باید مشابه نمونه تست ازنظر ابعاد و خواص مکانیکی باشد.

محاسن روش MFL

برخی محاسن مربوط به این روش به شرح زیر است:

  • قابلیت بازرسی مواد مغناطیسی و غیرمغناطیسی
  • مثل مواد کربن استیل، ضدزنگ، مواد دوبکس سا دوفازی و سوپر دوبلکس
  • سرعت بازرسی بالاتر
  • بازرسی در دماهای بالاتر تا ۱۵۰ درجه سانتی‌گراد
  • قابلیت اطمینان و حساسیت بالای روش
  • تشخیص عیوب بالا یا پایین جداره
  • قابلیت اسکن بلادرنگ نتایج به‌صورت رنگی

 

تفاوت بین SLOFEC و MFL

به دلیل ماهیت الکترومغناطیسی این روش با روش MFL مورد مقایسه قرار می‌گیرد. مطالعاتی بر روی این روش در جهت شناسایی و حساسیت نسبت به عیب برای محدوده مشخصی از ضخامت‌ها انجام شده است. عیب به‌صورت یک عیب نیمکره‌ای در ورق‌ها باضخامت‌های مختلف طبق شکل انجام شده است. نتایج نشان می‌دهد که این روش دارای حساسیت بالایی است.


بیشتر بخوانید : ارزیابی سلامت کابل  سیم بکسل های مهار برج آتش (Flare) با تکنیک غیر مخرب نشت شار مغناطیسی MFL

منبع:

https://silo.tips/download/s-l-o-f-e-c-fast-corrosion-screening-technique

کلیدواژه:

نشتی شار مغناطی

 

 

ارزیابی سلامت کابل  سیم بکسل های مهار برج آتش (Flare) با تکنیک غیر مخرب نشت شار مغناطیسی MFL

ارزیابی سلامت کابل  سیم بکسل های مهار برج آتش (Flare) با تکنیک غیر مخرب نشت شار مغناطیسی MFL

برج‌های آتش (Flares) در صنایع گاز و نفت به‌عنوان یکی از تجهیزات جلوگیری از ورود آلاینده‌های خطرناک هیدروکربنی در اتمسفر به شمار می‌روند. برج آتش یک وسیله احتراق گاز است که در صنایعی چون پتروشیمی‌ها، صنایع شیمیایی، پالایشگاه‌های گاز طبیعی همچنین در سایت‌های تولیدات گازی و نفتی دارای چاه‌های نفت، گاز، دکل‌های نفتی و گازی و دفن زباله‌های دریایی کاربرد دارد.

در کارخانجات صنعتی، برج‌های آتش برای سوزاندن گازهای آزادشده توسط شیرهای فشارشکن مورد استفاده دارد. در حین استارت و خاموش برخی کارخانجات و پالایشگاه‌ها، برج آتش برای احتراق‌های گاز برنامه‌ریزی‌شده در طول دوره کوتاه مورد استفاده قرار می‌گیرد.

این برج‌ها به‌طور عمومی مطابق شکل نشان داده‌شده به چند قسمت تقسیم می‌شوند:

  • خود پشتیبان
  • مهارشده توسط دکل یا دیرک
  • مهارشده توسط کابل سیم بکسل

.

ارزیابی سلامت

سلامت برج‌های آتش توسط روش‌های مختلفی قابل ارزیابی است که به شرح زیر می‌باشند:

بازرسی چشمی

استفاده از روش غیر مخرب MFL

تمیزکاری و روان کاری سیم بکسل ها

تأییدیه سلامت برج‌ها

ارزیابی میران کشش کابل‌های سیم بکسل

.

سیم بکسل ها

سیم بکسل های به‌عنوان طناب‌های کششی جهت برقراری پایداری و تعادل در سازه‌ها طراحی و مورد استفاده دارند. در شکل تعاریف اولیه برای بخش‌های مختلف سیم بکسل آورده شده است.

وایر یا مفتول

استرند (کلاف) یا مجموعه‌ای از مفتول‌ها

هسته: مجموعه‌ای از مفتول‌های قرارگرفته در مرکز طناب

طناب: مجموعه کلاف‌های احاطه‌کننده هسته

پیکربندی‌های مختلفی برای سیم بکسل ها مدنظر است. این سیم بکسل ها برای کاربردهای مختلفی طراحی و استفاده می‌شوند.

.

چرایی بازرسی کابل سیم بکسل ها

کابل‌های سیم بکسل به دلایل زیادی خراب شده و استحکام خود را در طول عمر مفیدشان از دست می‌دهند. در طول عملکردشان در طول دوره‌های زمانی بلند، خرابی‌های مختلفی مثل خوردگی و شکستگی مفتول‌ها به خاطر دما، بارگذاری‌های مختلف، عوامل محیطی و باد در آن‌ها به وقوع می‌پیوندد. این کابل‌ها مثل زنجیر می‌باشند اگر یک عضو دچار شکستگی یا آسیب شود کل زنجیره دچار گسیختگی می‌گردد. به همین صورت اگر مفتول‌های طناب دچار شکست شوند در این صورت باعث افزایش تمرکز تنش به دلیل بارگذاری‌های مختلف شده و استحکام آن پایین می‌آید و درنتیجه سیم بکسل دچار گسیختگی می‌گردد. در شکل زیر شکل‌های مختلف خرابی آورده شده است.

.

چه موقعی این طناب‌های کارایی خود را از دست می‌دهند باید دور انداخته شوند؟

در شروع راه‌اندازی سیم بکسل ها بعد از نصب، سیم و رشته‌های در حین به‌کارگیری در جای خود قرار می‌گیرند و قدرت شکستن طناب افزایش می‌یابد. پس از رسیدن به حداکثر خود سرعت آن کاهش می‌یابد. بازرسی دوره‌ای و روان کاری برای حفظ قابلیت اطمینان سیم‌های برج آتش و یکپارچگی آن‌ها الزامی است. برای عملکرد امن، سیم بکسل ها باید به‌صورت دوره‌ای مورد بازرسی قرار بگیرند و طی یک دوره‌ای باید دور انداخته شوند. دور انداختن سیم بکسل ها قبل از موعد مقرر پرهزینه است. داده‌های بازرسی این امکان را به وجود می‌آورد که تصمیم منطقی در مورد دور انداختن یا بکار گرفتن سیم بکسل ها گرفته شود.

.

بازرسی چشمی

 بازرسی چشمی به‌صورت دوره‌ای برای شناسایی ناپیوستگی‌های سطحی می‌تواند قرار بگیرد؛ اما این بازرسی‌ها قابل‌اطمینان نمی‌باشند. برای رسیدن به یک بازرسی کامل، قابل‌اطمینان، کمی و تحلیلی روش غیر مخرب نشتی شار مغناطیسی MFL می‌تواند کارساز باشد.

.

روش بازرسی نشتی شار مغناطیسی MFL

برطبق سیستم‌های در حال عملکرد، روش غیر مخرب می‌تواند در جهت ارزیابی شرایط سیم بکسل ها بکار گرفته شود که می‌تواند امنیت، اطمینان و عمر سرویس‌دهی سیسم بکسل ها را نشان دهد. برای شناسایی مفتول‌های شکسته شده سطحی و زیرسطحی، خوردگی‌ها و آسیب‌های مکانیکی، ساییدگی‌ها روش نشتی شار مغناطیسی می‌تواند کارساز باشد.

بخشی از کابل قرارگرفته در کلگی مغناطیسی ازنظر مغناطیسی توسط آهنرباهای قوی در جهت طولی یا محوری اشباع می‌شود. میدان مغناطیسی بالای سطح سیم بکسل تا زمانی که ناپیوستگی در کابل وجود نداشته باشد یکنواخت باقی می‌ماند. سنسورهای هال و کویل های مغناطیسی در اطراف کابل مقادیر ثابتی را ثبت می‌کنند. زمانی که سطح مقطع کابل تغییر کند میدان مغناطیسی دچار امواج می‌شود و نشتی شار مغناطیسی به‌صورت موضعی یا محلی افزایش می‌یابد. این ناپیوستگی‌ها توسط سنسورهای مغناطیسی ثبت می‌شوند. سیگنال‌های دریافت شده از سنسورها به یک سیستم مرکزی فرستاده شده و ذخیره می‌شوند و برای پردازش‌های بعدی مورد استفاده قرار می‌گیرند.

.

سیگنال سنسورها

دو نوع سیگنال سنسور برای بازرسی نشتی مورد استفاده قرار می‌گیرد که به شرح زیر است:

عیب محلی LF: برای شناسایی مفتول‌های شکسته شده (داخلی یا خارجی) سیگنال‌های کیفی را ارائه می‌کند.

عیب کاهش سطح مقطع LMA: برای محاسبه سطح مقطع، سیگنال‌های کمی را ارائه می‌کند.

عیب محلی یا Local Flaw (LF) – یک ناپیوستگی در کابل سیم بکسل مانند مفتول‌های شکسته یا آسیب‌دیده، خوردگی مفتول‌ها یا پیتینگ، شیارهای سایشی، ایجادشده بر روی مفتول‌ها و هر شرایط فیزیکی دیگری که باعث کاهش سلامت کابل به‌صورت موضعی شود.

کاهش سطح مقطع Loss of Metallic Cross-Sectional Area (LMA)- اندازه‌گیری نسبی مقدار جرم یا ماده ازدست‌رفته در یک‌بخشی از طول کابل با مقایسه یک نقطه نسبت به نقطه مرجع که بیانگر ماکزیمم مقدار کاهش سطح مقطع است.

داده‌های به‌دست‌آمده از یک کابل با قطر ۳۲mm و پیکربندی ۶×۳۶ در زیر آورده شده است. سیگنال‌های LF نشانگر مفتول‌های شکسته و LMA بیانگر مفتول‌های از دست داده‌شده می‌باشند.

منبع: 

https://www.linkedin.com/pulse/integrity-assessment-guy-wire-rope-supported-flare-stack-dharman/

بیشتر بخوانید:

روش نشتی شار مغناطیسی – بخش دوم

روش نشتی شار مغناطیسی – بخش دوم

نشتی شار مغناطیسی Magnetic Flux Leakage

نشتی شار مغناطیسی یکی از روش‌های آزمون‌های غیر مخرب است که برای شناسایی خوردگی ، ترک‌هایی محیطی و کاهش ضخامت دیواره سطح لوله‌ها و تیوپ‌های فولاد کربنی، نیکیل، فولاد ضدزنگ بکار می‌رود. این روش به‌طورمعمول برای بازرسی کول‌های هوا و تیوب‌های بویلرهای حرارتی بکار برده می‌شود. این روش ازنظر قابلیت سایزبندی عیب دارای محدودیت‌هایی است دامنه سیگنال نشتی شار مغناطیسی از تغییرات سرعت حرکت سنسور مغناطیسی تأثیر می‌پذیرد و سیگنال دارای مؤلفه فاز نیست؛ بنابراین این محدودیت در جهت شناسایی روش نشتی مغناطیسی بیشتر عمل می‌کنند تا پیدا کردن اندازه عیب. بازرسی تقریباً در این روش سریع است و سرعت حرکت سنسور تا بر ۱m/s هم می‌رسد. همچنین این روش برای شناسایی و افزایش حساسیت نیازمند این است که سنسور در مرکز تیوب یا لوله‌ها قرار بگیرد. اصل حاکم بر این روش بر اساس مغناطیس کردن استوار است. دو آهنربا در هسته لوله فولادی به‌طوری باید قرار بگیرند که باعث مغناطیس شدن دیواره و به اشباع رسیدن میدان در داخل دیواره گردند. برای این منظور از سه کویل استفاده می‌شود که هرکدام به عیب خاصی حساس می‌باشند.

.

شناسایی کاهش ضخامت دیواره تیوب‌ها

برای شناسایی کاهش ضخامت دیواره تیوب‌ها، از یک کویلی استفاده می‌شود که در مود مطلق قرار دارد. این کویل به دور یک هسته از جنس فولاد پیچیده می‌شود که دارای دو آهنربا است. این کویل توان میدان مغناطیسی ایجاد شده توسط آهنرباها را اندازه می‌گیرد؛ بنابراین جاهایی که کاهش ضخامت یا خوردگی ایجاد می‌گردد حتی اگر تغییرات شار میدان مغناطیسی هم اتفاق نیفتد قدرت یا توان میدان کاهش می‌یابد و این تغییرات قابل‌شناسایی است.

.

شناسایی پیتینگ

برای شناسایی پیتینگ، از یک کویل راهبر استفاده می‌شود. این کویل بر روی کویل مطلق پیچیده می‌شود و بین دو آهنربا قرار می‌گیرد. زمانی که میدان مغناطیسی از بخش پیتینگ عبور می‌کند یک مقداری میدان دچار اعوجاج می‌شود و این اعوجاج باعث نشتی میدان از خارج جداره تیوب یا لوله می‌گردد. کویل راهبر این میدان را شناسایی و این کویل قابلیت شناسایی این را ندارد که آیا عیب در داخل جداره است یا بیرون جداره. برای پیدا کردن محل پیتینگ، نیازمند یک کویل سومی هست به نام کویل دنباله که قابلیت شناسایی عیوب داخلی و خارجی را نسبت به هم دارد.

منبع:

https://www.zener-group.com/knowledge-base/magnetic-flux-leakage-mfl/

بیشتر بخوانید: عملکرد نشتی شار مغناطیسی در عیب‌یابی خوردگی کف مخازن

عملکرد نشتی شار مغناطیسی در عیب یابی خوردگی کف مخازن

عملکرد نشتی شار مغناطیسی در عیب‌یابی خوردگی کف مخازن

Magnetic Flux Leakage for Corrosion Mapping of Storage Tank Floor

در این متن عملکرد نشتی شار مغناطیسی در عیب یابی خوردگی کف مخازن مورد بررسی قرار می گیرد.

ساختار اولیه بازرسی به روش MFL در شکل ۱ نشان داده شده است. این شکل نشان‌دهنده یک اسکنر MFL است که توسط شرکت silverwing طراحی و ساخته شده است. این وسیله از یک یوک مغناطیسی و مجموعه‌ای از سنسورهای مغناطیسی که در یک راستا چیده شده‌اند تشکیل‌شده است؛ تا در هر بار اسکن بتواند سطح مشخصی را تحت پوشش قرار داده و بازرسی کند. تمامی این ملزومات در بخش پایینی اسکنر تعبیه می‌شود. این مجموعه بر روی سطح فولادی قرار گرفته و توسط یک سیستم محرک در جهات مختلف حرکت می‌کند. معمولاً جهت یوک و سنسورها نسبت به جهت حرکت درجه اختلاف دارد.

.

نحوه ثبت داده

سطح مقطع این اسکنر در شکل ۲ نشان داده شده است. سیگنال نشتی مغناطیسی در اثر حرکت یوک و سنسور بر روی سطح صفحه فولادی و جمع‌آوری داده‌های حاصل از سنسورها حاصل می‌شود.

نحوه ثبت داده در یک سنسور به شرح زیر است:

میدان مغناطیسی توسط یوک مغناطیسی و قطب‌های آهنربا بر روی صفحه فولادی القا می‌شود.

القای مغناطیسی در حدی است که باعث اشباع میدان در راستای ضخامت صفحه می‌گردد.

در صورت عدم وجود عیب در صفحه فلزی فولادی میدان کاملاً یکنواخت در راستای ضخامت پخش می‌گردد؛ ولی درصورتی‌که عیبی در راستای ضخامت وجود داشته باشد یا خوردگی در راستای ضخامت اتفاق افتاده باشد در این صورت به دلیل مقاومت مغناطیسی ایجادشده جریان شار میدان مغناطیسی باعث می‌شود؛ که مقداری از میدان به بیرون از صفحه راه یابد که به این پدیده نشتی شار میدان مغناطیسی گفته می‌شود؛ که این مسیر طبیعی جریان میدان مغناطیسی را تشکیل می‌دهد و از بالا و پایین صفحه منتشر می‌شود. معمولاً در مورد کف مخازن به یک سطح از مخزن دسترسی وجود دارد و سطح پایینی کف مخزن غیرقابل دسترسی است. با روش MFL بدون دسترسی به سطح پایینی صفحه می‌توان مقدار خوردگی آن را مورد تجزیه‌وتحلیل قرار داد.

.

ترکیب روش MFL با تکنولوژی‌های دیگر

ازآنجایی‌که برخی خوردگی‌ها در سطح پایینی صفحه یا کف مخزن اتفاق می‌افتد و برخی از آن‌ها در سطح بالایی صفحه ممکن است ظاهر شوند لذا ازنظر شناسایی توسط روش MFL یک سیگنال را دریافت می‌کنند و تفاوتی ازنظر اثربخشی بر روی سنسورهای مغناطیسی داده بردار ندارند. لذا برخی وقت‌ها روش MFL برای عملکرد نشتی شار مغناطیسی در عیب یابی خوردگی کف مخازن با تکنولوژی‌های دیگری ترکیب می‌شود تا بتواند عیوب پایین صفحه را از عیوب بالایی متمایز و تفکیک کند. این تکنولوژی به نام استارز STARS یا Surface topology air reluctance System معروف است. این تکنولوژی که از روش‌های تست غیر مخرب جدید است در جهت شناسایی تغییرات شار مغناطیسی ایجادشده در سطح صفحه فولادی عمل می‌کند. بطوریکه عیوب سطح بالایی صفحه باعث تغییر جریان شار مغناطیسی شده و این تغییرات توسط استارز قابل‌شناسایی است.

روش استارز از مجموعه‌ای از سنسورها مکمل دیگری بین صفحه و قطب مغناطیسی یوک استفاده می‌کند. وقتی‌که فاصله بین یوک مغناطیسی و سطح بالایی صفحه افزایش می‌یابد. دانسیته شار مغناطیسی کاهش می‌یابد؛ بنابراین هر تغییراتی در سطح بالایی صفحه فولادی (در اثر وجود عیب) باعث تغییر دانسیته شار در فاصله هوایی شده و این تغییرات توسط سنسورهای خاص این کار اندازه‌گیری و ثبت می‌گردد.

منبع:

https://eddyfi.com/en/technology/magnetic-flux-leakage-mfl-tank-inspection

عیب یابی گرده‌ها و لوله‌های فولادی به روش نشتی شار مغناطیسی با جریان متناوب

عیب یابی گرده‌ها و لوله‌های فولادی به روش نشتی شار مغناطیسی با جریان متناوب

در روش نشتی شار مغناطیسی، خطوط میدان در داخل قطعه مغناطیس پذیر نفوذ کرده و بر اساس قرار گیری خطوط میدان نسبت به هم می تواند عیوب موجود در دیواره لوله ها و یا قطعات میلگرد فولادی را شناسایی کند. در برخی از این روش ها منبع ایجاد میدان مغناطیسی از طریق سیم پیچ ها و با بهره گیری از جریان متناوب ایجاد می گردد. جریان مغناطیسی بر روی سیم پیچ هایی که بر روی یوک قرار گرفته اند ایجاد می گردد و این یوک ها به فاصله خیلی کمی از قطعه مورد تست قرار می گیرند که باعث عبور خطوط میدان مغناطیسی از داخل قطعه می شود. در وسط یوک مغناطیسی از سنسورهای حساس به میدان مغناطیسی استفاده می شود. این سنسورها در صورت وجود نشتی شار مغناطیسی آن را شناسایی و مورد ارزیابی قرار می دهند. معمولاً از دو یوک مغناطیسی در اطراف قطعه مورد تست و به زاویه ۱۸۰ درجه نسبت به هم استفاده می شود.

این وضعیت قرار گیری یوک ها نسبت به هم کارایی بیشتری در شناسایی عیوب و حساسیت تجهیزات تست دارد. از آنجایی که برای قطعات حجیم کل سطح جشم در یک نقطه مشخص قابل ارزیابی و اسکن نمی باشد، لذا با به چرخش در آوردن یوک های مغناطیسی حول محیط قطعه کار می توان کل سطح را اسکن و عیب یابی نمود.

مزایا

از جمله مزایای این روش به موارد زیر می توان اشاره کرد:

  • عیوب به ریزی ۱ میلی متر توسط این روش قابل شناسایی است.
  • حساسیت نسبتا بالا این روش برای شناسایی عیوب محوری یا در راستای طولی میل گرد های فولادی.
  • نیازی به استفاده از از ماده واسط یا کوپلنت ندارد.
  • نتایج با قابلیت اطمینان بالا و قابلیت تکرار پذیری بالا را دارد.

منبع : http://www.natts.co.in/product/magnetic-flux-leakage-testing-mflt/

بیشتر بخوانید: نشتی شار مغناطیسی

.